THE UNIVERSITY OF MICHIGAN

Technical Report 31

DEC PDP-7/IBM 1800 HIGH SPEED INTERFACE
REFERENCE MANUAL

Foy, Jr.
. .Brender
Frantz
Miller

“ oWy
P @m e

CONCOMP: Research in Conversational Use of Computers
"F.H. Westervelt, Project Director
ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1970

-

DM
150 2

ABSTRACT

This report describes an interface between an IBM 1800 computer
and a DEC PDP-7 computer. It has the following features: 1) it
allows the transfer of blocks of data directly from the memory of
one computer to the memory of the other, at up to 125,000 words per
second, in parallel with program execution; 2) it allows a program
running on one machine to interact asynchronously with one running
on the other through a system of "attention'" interrupts; 3) it is
relatively simple to control, being symmetric to both computers;

4) it compensates automatically, in either of two modes, for the

difference in word length between the PDP-7 and the 1800.

TABLE OF CONTENTS

Title

PREFACE
1. INTRODUCTION

2. . 'FUNCTIONAL DESCRIPTION
2.1 Functional Organization

2.1.1 Control Registers

2.1.2 Data Path

2.1.3 Special Operations

2.1.4

2.2 Interface Programming
2.2.1 Status Register
2.2.2 Commands

3. ENGINEERING DESCRIPTION

3.1 Programmed Transfers

Internal Timing

Progr

3.1.1

3.1.2 . External Timing: PDP-7
3.1.3 External Timing: 1800
3.1.4
3.1.5
3.1.6

Read/Write: PDP-7
Read/Write: 1800
Miscellaneous

Transfers

3.2 k
.1 Initialization
2
3

Abnormal Termination

4, PROGRAMMING SUPPORT

4.1 Philosophy and Structure

4,1.1 Basic Conventions and Low Level Routines
4.1.2 Programmable Operations

4.2 1800 Implementation under TSX
4,2.1 Attention Interrupts
4.2.2 Block Transfers
4.2.3 Other Operations

4.3 PDP-7 Implementation under LOCOSS

Attentions and Errors

Serial/Parallel Data Flow

12

12
12
15
18
20

22
22
25

30

30
31
34
35
37
38
39

43
44
46
51

56

56
57
61

66
67
70
72

82

Title

4,3.1 Attention Interrupts
4,3.2 Block Transfers

5. EVALUATION AND CONCLUSION

5.1

5.2

5.3

Design Variations

5.1.1 General Frame Size

5.1.2 Alternate Data Transfer Method

5.1.3 Constraints on Control Functions

5.1.4 Use with Nondirect-Memory-Access Machines

"If we had it to do over..."
5.2.1 Uniformity of Structure
5.2.2 Simultaneity of Control

Summary

BIBLIOGRAPHY

APPENDIX A: INTERFACE CONTROL PANEL

APPENDIX B: 1800 AND PDP-7 COMMAND SUMMARIES

APPENDIX C: DIAGNOSTIC TEST PROGRAMS

C.1 1800 Test Programs
C.1.1 Introduction
C.1.2 Error Reporting
C.1.3 Section A Tests - Registers
and Control Functions
C.1.4 Section B - Cooperative Tests
C.1.5 Section C - Block Transfer Tests
C.1.6 1Initialization - All Sections

C.2 PDP-7 Test Program
C.2.1 Section A - General Register
Exerecises
C.2.2 Section C - Block Transfer Tests

C.3 Section B - Cooperative Tests

Page

83
86

94

94
94
96
96
96

97
97
97

98

99

100

104

112

112
112
113

114
117
117
120
123

125
127

132

1.1

1.2

1.3

2.1

3.1

5.1

Al

LIST OF FIGURES

Logic of Computers Group Computer Complex
Logic of Computers Group 1800 System
Logic of Computers Group PDP-7 System

Interface Block Diagram

Schematic Representation of Period, Phase, and
Strobe Timing Relationships

Method of Achieving '"Variable Length' Data
Register (Timing and Parallel Gating Not Shown)

Interface Control Panel

Page

10

11

13

33

95

103

PREFACE

The work described here was conducted at the Logic of Computers
Group, a research unit within the Department of Computer and Communication
Sciences of The University of Michigan, under the direction of
Professors A. W. Burks and J. H. Holland. In addition to individual
dissertation projects, two major, long-range projects are being developed
on the computer facilities located at Logic.

The first is a simulation system for investigation of cellular, or
iterative array, models. Members of the Group have designed and imple-
mented a computer language and programming system specifically oriented
toward this class of models. Two investigations currently under way
on the system are a neural network simulation and a simulation of a
biological cell population. Additional work is planned to explore models
exhibiting adaptive or learning behavior.

The second project, under the direction of Professor M. H. 0'Malley
of the Phonetics Laboratory of the Department, is implementing an on-line
speech analysis and synthesis system for both teaching and research.

The special equipment for this work is interfaced to the IBM 1800.
Capabilities are being created to input, store, analyze, edit, and
synthesize speech and/or coded speech data.

The hardware facilities present a number of awkward problems not
often found elsewhere. With its display, the PDP-7 has the greater
potential for interactive control and, of course, for graphic presentation

of the speech analysis. On the other hand, the 1800 has the bulk storage, more

core storage, and in general a more elaborate operating system (i.e., a

full batch monitor); hence program development tends to be easier on the 1800.
The general result is that most 1arge programs tend to be divided functionally
between the two.computers with the PDP-7/display used for man-machine
interaction and the 1800 serving as the primary computation or simulation

£

processor.

A slow interface (about 8000 baud) has been available since 1967
but certainly was too slow for many of our projected uses. A block-transfer
interface was set as an objective to achieve high data rates.

It was an unfortunate fact that the bulk storage device was on the
computer with the smaller-sized word (1800 word has 16 bits; PDP-7 word
has 18 bits). Had it been the other way, the data path could have pfovided
word-for-word transfers and the overhead of unused bits on the disk would
probably have been accepted without much protest. However, the larger word
machine was at the end of the chain and we definitely wanted to load programs
into the PDP-7 from the 1800 disk. We also anticipated that much of our simu-
lation data would be integer valued and should be movable from one machine
to the other on a word-for-word basis. We rejected a scheme for storing
one PDP-7 word in two 1800 words as being excessively wasteful of storage
space. This eventually led to the data path currently used.

We also felt it was very important that the Interface be easy to set
up and control, the small core memory available being too valuable to consume
with elaborate device support programs. It was also thought desirable that
either computer be able to control the Interface by itself.

In setting forth these requirements, we were quite aware thaf their

reasonableness depends on the fact that we regularly use our computers

as a single system. We wanted maximum flexibility rather than protection
from errors in the other computer.

This Interface has fulfilled those goals. It provides what we
believe to be the most tightly coupled two-computer system possible
without shared memory.

The functional design was developed by R. F. Brender and J. L. Foy, Jr.
The Interface was built by Logic, Inc., of Detroit, Michigan. J. Miller,
of that company, did the logic design in close cooperation with Foy.
Acknowledgment is also due G. Cooper for helpful advice. Brender and
Foy developed the diagnostic software; Foy and D. R. Frantz designed
and implemented the device support software.

The authors of various sections of this report are:

Preface Brender

2. Functional Description Brender and Foy
3. Engineering Description Foy and Miller
4. Programming Support Frantz and Foy
5. Evaluation and Conclusion Brender
Appendix A. Interface Control Panel Foy
Appendix B. Command Summaries Foy

Appendix C. Test Programs Brender and Foy

1. INTRODUCTION

This_reﬁort describes interface equipment specially designed for the
Logic of Computers Group of the Computer and Communication Sciences Department
at The University of Michigan.

The Group's computer facilities support two major research projects: one
involves an interactive simulation system oriented.toward cellular models,
the other is concerned with on-line analysis and synthesis of speech. The
hardware consists of an IBM 1800 system with 1.5 million words of disk storage,
to which the speech analysis and synthesis equipment is attached, and a DEC
PDP-7 equipped with a modified 338 display (see Figuﬁs 1.1 - 1.3), The two
central processors are interconnected by a low-speed interface capable of trans-
ferring data one word at a time under program control; thus each machine appears
to the other aé a medium-speed I/0 device. The shortcomings of this arrangement
spurred the design of the interface described herein, which has the following
features: 1) it allows the transfer of blocks of data directly from the memory
of one computer to the memory of the other, at up to 125,000 words per second,
in parallel with program execution; 2) it allows a program running on one
machine to interact asynchronously with one running on the other through a system
of "attention" interrupts; 3) it is relatively simple to control, being
symmetric to both computers; 4) it compensates automatically, in either of

two modes, for the difference in word length between the PDP-7 and the 1800.

suol3lng ysng

xoTdwo) zxo23ndwo) dnoan saxo3ndwo) 3jo oT1boT

(usd (pPoTITPOW)
IUDBTT y3zTM) Ket1dstq
8e¢€

*o9s/xeyd €9

*o9s/s3Tqebon

= 9@0vJI=23url
poads ybtH

T°

T =2anbtg

3.dtnbg
yooadg

*o9s/aeyd 000T

p—

Tauuey) ejzeq

*09s/sSpIoMm M/E

SATIP/SPIOM MQOS

SOATIA €

N

¥STA
0T8T

ITq 9T

oosn g

008T WdI

“M9T

s@oeIJISj3UT

ISXSTATI3TNK
*oesnl Gg1°1T
ITq 8T M8
*0o9s/aeyd 00¢ L-ddd Ddd
Iopeay
adey axadeg
*o9s/xeyd 0T
odA3at1eg

dsyd ¢¢

IOUTH

*o9s/aeyd g1

.oww\mzﬁﬁwoo 08 young
*O09s/suumnTod Q0§ peoy

pareoqlay
A93UTId 9T8T

youndg-pesy
pPABD €%V T

CPU (1801C2)
16K of 2u sec core
16 bits/word + paritf and storage protection
priority interrupt system (12 levels)
3 index registers
1- and 2-word instruction formats

6 data channels

. Keyboard-Printer (1816)

15 characters/second + hardware tabbing

Card-Read-Punch (1442)
read 300 cards/minute

punch 60 cards/minute

Disk (1810A3)
3 independent drives
movable heads
interchangeable cartridges (1815)

512,000 words per cartridge

o

Figure 1.2 Logic of Computers Group 1800 System

©10

>CPU
8K of 1.75usec core
18 bits/word
hardware interrupt

Teleprinter (33KSR)
10 characters per second

Paper Tape Reader
8-channel
300 characters per second

Paper Tape Punch
8-channel
63 characters per second

CRT Display (Modified 338)
A display consisting of a DEC 338, less the PDP-8
portion of the 338, is interfaced to the PDP-7. This
is locally known as a 337 and is the prototype for
the DEC 339. The display operates asynchronously from
instruction files in the PDP-7 memory. It provides
point, increment, short vector, vector, and
character plotting modes, and. is capable .of branches and
subroutining as well as conditional branches,

depending on the state of user-controlled switches.

Figure 1.3 Logic of Computers Group PDP-7 System

12

2. FUNCTIONAL DESCRIPTION

The structure of the Interface is the result of two major design deci-
sions: the basic data path would consist of a circular shift register
providing variable frame or word sizes, and the major control registers
would be fully accessible to both computers making it possible for either
computer to initiate a data transfer without cooperation of the other.

In addition, the Interface has carefully been kept as symmetric as

possible with respect to the control capabilities of the two computers.

2.1 Functional Organization

This section discusses the functional organization of the Interface.
The later parts of this chapter will present the commands available
to the two computers. It may be uwseful to refer to Figure 2.1 during
the discussion.
2.1.1 Control Registers

The Interface consists of seven major registers:

1. Data Register

2, 1800 Shift Counter

3. PDP-7 Shift Counter -

4. 1800 Address Register

5. PDP-7 Address Register

6. Unit Count Register

7. Status Register

13

urexberq }ooTg @0®IIS3UI T°Z °2InbTg

SANIT ¥Y1V¥d O/I

SANIT YIvV¥d O/I

—o—
SANIT TOJLNOD O/I
L-ddd Ddda
|||||||||||||||||||||||||||||||||||||| =
Ioa3Uno)d _
3A3ITYs d SNLV.LS |
—_—] I
|
) NO |
9ALSIOTI " LNOOD LINO _
v sSToa3uod! STOI3UO0)
: Hmmmcmuau (x23suea] _
YIvVa MOOHM.U@EEMH@OMQV |
i jolsd=liiiiilele) SsSdYAaav L-d4ddad I
]
|
|
1
I922Uunod SSHYAdY 008T _
33TYS ¥ |
B N R e -
SANIT TOILNOD O/I 008T WHI
(- u
J
{
b

14

The first three registers are not directly addressable by the pro-
grammer; they are used by the Interface itself during block: transfers
of data. The Data Register communicates directly with the core storage
of each computer by means of the direct memory access facilities, known
as '"'data breaK'" on the PDP-7 and as "cfkle steal" on the 1800. The
Shift Counters control the special functions which compensate for the
difference in memory word size between the PDP-7 and 1800 (see
Section 2.1.2.).

The last four registers are directly controllable by the user
and may be read and written from either computer. The Interface will
respond correctly to simulaaneeuSﬁ.Readsvandlor Writes from both
computers; it is the programmer's responsibility to ensure that such
operations make sense, since simultaneous Writes to the same Interface
register will produce indeterminate results.

The 1800 address register specifies.the.1800 core address from (to)
whiéh data is obtained (stored). The PDP-7 address register specifies
the PDP-7 core address from (to) which data is obtained (stored). The
unit count register counts the number of units! transferred and causes
a transfer to terminate when it reaches the value zero.

Although neither computer currently requires more than 14 bits
to specify an address, these registers are each 16 bits 'in size. Thus,
when not used for data-break transfers, they are readily useable as
a full-duplex direct-program-controlled data path. When used in this

manner two of the registers are used for.data and the third for control

flags.

1 A "unit" of data will be defined later. For the moment it is sufficient
to consider a unit as being one word.

15

The Status Register is a 16-bit entity through which the programmer
may exchange control information both with the Interface itself and with
the programmer of the opposite computer. The eleven high-order bits
of this register consist of various flip-flops which indicate and/or
determine the internal condition of the Interface; all may be read by
the programmer, and some may be individually set, cleared, or both.

The function of each bit is detailed below.

The five low-order bits of the Status Register are actually two
separate registers: one receives data from the PDP-7 (whenever the PDP-7
issues a Write addressed to the Status Register) and presents data to
the 1800 (whenever the 1800 issues a Read addressing the Status Register),
while the other receives from the 1800 and presents it to the PDP-7.

In this way, the two computers can simultaneously present status
information to each other. Because they are used in conjunction with
the "attention" interrupt facility, these five-bit sections are referred
to as the "attention codes'.

In order to set up a data transfer, one of the computers seizes
the Interface for its use according to.a convention described below.
Then it loads the address registers with appropriate addresses, loads
the Unit Count register with the length of the data block, and sets the bits
of the Status Register to indicate direction of transmission and handling
of operation-complete interruption. Then the computer issues a Start
command and the transfer commences.
2.1.2 Data Path

The data path consists of a Data Register (also called the Shift

Register) and two Shift Counters. The 34-bit Data Register is composed

16

of a 16-bit (A) and an 18-bit (B) section; the 16-bit section can be
loaded in parallel from the 16-bit output bus of the 1800, and the

18-bit section can be loaded in parallel from the 18-bit I/O bus of

the PDP-7. Similarly, the 16-bit section of the Data Register can be
gated to the input bus of the 1800. while its 18-bit section can be gated
to the I/0 bus of the PDP-7. The two seétions of the Data Register,
then, are capable of independent, parallel transfers of data to and from
their associated computers, while the Data Register as a whole can be
rotated right. Serial and parallel operations are performed alternately:
data are parallel-transferred from the sending computer to its section
of the Data Register, the latter then shifts right as necessary to move
the data into the other section, and then the .data are parallel-transferred
from that section to the receiving computer.

The following detailed description of the events that take place
during a transfer from the PDP-7 to .the 1800 in the "18/16'" mode illustrates
the functions of the Data Register and the two Shift Counters.

When the Start command is given, the 1800 Shift Counter is set to
16 and the PDP-7 Shift Counter to 18. A word is loaded from the PDP-7
into its portion of the Data Register. . Shifting is begun, and both shift
count registers are decremented for each bit position shifted. Shifting
continues until one of the shift count registers reaches zero. Inithis
case, this will occur after 16 shifts, which have moved the low-order
16 bits of the PDP-7 word into the 1800 portion of the data register.
Shifting is suspended until the 1800 part of the data register can be
stored in the 1800 memory; then the 1800 Shift Counter is reloaded

with 16, and shifting continues. After two more shifts, the PDP-7

17

Shift Counter will go to zero. At this point, the two high-order bits
of the PDP-7 data word are in the 1800 portion of the data register.
Shifting is suspended while the next PDP-7 memory word is loaded into
the PDP-7 portion of the Data Register. Then the PDP-7 Shift Counter is
reloaded with 18 and shifting resumed. After 14 more shifts, the 1800
Shift Counter will go to zero. The 1800 portion of the Data Register,
which now contains two bits of data from one PDP-7 word and 14 bits from
the next, will be transferred into the 1800's memory. This process con-
tinues in the same manner until both Shift Count Registers go to zero
simultaneously. This will occur when an integral number of words has
been moved in each machine, and is considered one Unit Operation. The
Unit Count Register is then decremented. The entire sequence is repeated
until the Unit Count Register has become zero, which signals the end of
the transfer operation. -

When the user wants to transmit data from the PDP-7 to the 1800
for processing, he uses the "16/16" mode. This mode is very similar
to that described above, except that the PDP-7 Shift Counter is loaded
with 16, so that after every right-shift of 16 bits the PDP-7 section
of the Data Register is reloaded with another 18-bit word while the 16-bit
1800 section is being written into the 1800. Reloading the PDP-7 section
after a shift of only 16 places destroys the two high-order bits which
remain there; this information is simply lost. However, it is the purpose
of this mode to transfer the low-order 16 bits of each word of the PDP-7
to corresponding words in the 1800, preserving the 'word" relationships
necessary for efficient processing. (Often the data will fit naturally
into a 16-bit frame anyway, as when two 8-bit characters are packed

together, so that no useful data are lost at all by transmitting only

18

16 bits.)

As a consequence of this organization, a unit of data is dependent
on the mode used. In the '16/16" mode, one unit corresponds to one
word in each machine. In the "18/16" mode, one.unit corfesponds to
nine words on the 1800 and eight words on the PDP-7.

The inverse transfers are perfowmed very similarly. Bits are shifted
out of the low-order part of the 1800 section into the high-order part
of the PDP-7 section. Note that in the ''16/16" mode from 1800 to PDP-7
the bits are not shifted into the very left of the PDP-7 section but rather
into a point 16 bigs from the low end of..the word. Thus after 16 shifts
a word is properly aligned in .the low-order.part of the word (right
justified).

To simplify exchanges of integer. .valued data in the 16/16 mode,
the high-order bit of data entering the PDP-7 is fanned out.to the three
highest order bits in the PDP-7. Since twos complement arithmetic i;
used by both machines, signed integers. are. treated appropriately. On
16/16 mode transfers to 1800, the three high-orders bits should all be
the same to avoid errors introduced by truncation. This is not checked
by the hardware.
2.1.3 Special Operations

The Status Register contains two bits, known variously as the
"test-and-set", '"seize" or '"resolution' bits, which (among others)
cannot be set directly. Their purpose is to allow the resolution of
contention situations, in which both computers attempt to perform con-
flicting operatiéns on the Interface at the same time. One bit is assigned

to mean that the PDP-7 is controlling the Interface, the other that the

19

1800 has control. ‘A computer "seizes' the Interface by issuing the
Test & Set command, which turns on the corresponding resolution bit

if and only if the resolution bit for the other computer is off. The
Test & Set instruction always resolves unambiguously: one and only one
bit will be turned on even if the command is issued simultaneously by
both computers. The resolution bits are provided purely for the use of
the software in each computer; they have no effect whatever on the Inter-
face (except, of course, for the Test & Set command). By programming
convention, each computer 'seizes" the interface before using it and
releases it by clearing its resolution bit, when finished. '"Attention"
signals passed solely through the Status Register constitute the only
exception to this rule.

The Test § Set command has two forms: immediate and pending. The
first takes immediate effect, and either succeeds or fails depending
on the state of the other machine's resolution bit. The second is
"remembered" by the Interface and 'seizes" it as soon as the other
machine's resolution bit is zero, causing an interrupt to the issuing
computer. The programmer can thereby acquire a busy Interface as soon
as it becomes available without having to wait in a test loop.

A general reset of the Interface will occur whenever power is turned
on for the PDP-7 or 1800, and also whenever the RESET buttons on the
Interface console or the 1800 console are pressed. This same function
is available to the programmer as the Blast instruction, which clears
the interface and resets all control circuits to the idle state. Any
ongoing data transfer will be halted immediately (but not necessarily

correctly), and any pending "seize' will be cleared.

20

The Halt command will stop any data transfer at the end of the
block (1 word or 8/9 words, depending on mode) in which the Halt was
received by fhe Interface. The Address, Count, and Status Registers will
be in the proper states such that the transfer may be resumed by issuance
of the Start command. If these registers are logged out,.the Interface
can be used for any other operations before the registers are reloaded
and the Start issued. This allows high-priority transfers to interrupt
lower-priority ones whenever desirable. |
2.1.4 Attentions and Errors

Interrupts from the Interface may be divided into two groups:
expected and unexpected. Expected interrupts occur at the completion
of a data transfer or the success of a pending Test § Set. (explained
in 2.3). Unexpected interrupts .result from explicit action of the
opposite computer or frem errors detected during data-break transfers.
In this Interface unexpected interrupts are called "attentions" and
special provisions are made for,handlingptheée events.

An attention is initiated.by one computer loading the attention
code and setting the attention bit. for the opposite computer. When
the interrupt is serviced by the receiving computer, it reads the
attention code to determine the action to be taken. When ready to
accept another attention the computer must clear its attention bit.

The attention code is useful for providing control ‘information
between the two computers independent of and even in parallel with
ongoing data transfers. In addition, it provides a means to initiate
a "cooperative'' data transfer as in.this example:

The PDP-7 has data to be sent to the disk storage dévice attached
to the 1800. After seizing the Interface, the PDP-7 loads the PDP-7

address and count registers and also loads the desired disk memory

21

address into the 1800 address register. It then gives an attention
command to the 1800. The attention register provides a means to specify
to the 1800 that a particular interpretation is to be given to the
content of the 1800 address register. The 1800 must save the 1800
address content for later use, then load it with the memory address of
an available buffer region and start the data transfer. The total
operation is completed by the 1800 writiné the data onto the disk at the
previously designated location.

The use of a separate register as an attention code register makes
cooperative initialization such as this quite simple, although the basic
registers can be used if more elaborate control sequences are employed.
Such an additional register provides a signal path for synchronizing
intricate. control sequences between the two computers. It also provides
a separate signal path that can be used in parallel with on-going
data-transfers.

The Interface is capable of detecting three kinds of errors during
data transfers: a parity error or storage-protect violation on the 1800
(those features are not installed on the PDP-7), or an attempt by either
computer to.alter the Count or Address Registers while a data transfer
is actually in progress. When an error is detected, the following events
occur:

1. The transfer is aborted immediately if the error was parity

or storage-protect; if an "illegal write", the data transfer
continues normally but the illegal operation is suppressed.

2., The code 2 is loaded into the attention codes of both computers --
replacing any existing code present at the time. Thus, code 2
should not be used by the software for communication purposes.
(Sometimes the hardware loads code 3 instead, so it too should
be avoided by the software.)

3. Both attention bits are set, thereby interrupting both computers
for notification of the error. The error condition within the
Interface can only be cleared by a Blast command - presumab}y,
in most cases the computers should suspend Interface operations

and await human intervention.

id

2.2 Interface Programming

The programmer interacts with the Interface through the Status
Register, whose bits can be variously set, cleared, or tested, and
through the command repertoire, which is essentially symmetric to both
computers with some variations to take’advantage of special features.

The Interface Registers consist of 16 bits, numbered for reference
0 to 15. These bits correspond in the obvious way to the 16 bits of
an 1800 word, and correspond to the right-hand 16 bits of the 18-bit
PDP-7 word. (Thus, Interface register bit 0 corresponds to PDP-7 bit
2, bit 15 to bit 17.) Interface registers communicate with the
accumulator on the PDP-7, and with both the accumulator and core storage
on the 1800. .The two high-order bits of the accumulator are set to zero

whenever the PDP-7 reads an Interface register, and are ignored whenever

it writes one.

2.2.1 Status Register

[d

o

r l o
OP. | ATTENTION ENABLE RESOLUTION TR. (NOT |ATTENTION

COMP. 1800!?DP7 ISOOJPDP7 1800 IPDP7 RUN | prr. MOPEjyseny| cope

Vg
P

0 1 2 3 4 5 6 7 8 9 10 11 15

Notes:

interrupt-causing condition

may be individually set by programmer
may be individually reset by programmer
1s reset by Clear Status command

QXX w»n %

Bit @ - Operation-Complete (*RC)

Is set by Interface whenever a block transfer terminates normally,
or whenever a Test § Set (Pending) takes effect. Causes an interrupt
to 1800 and/or PDP-7 if corresponding Enable bit(s) are on. Is not set
when a block transfer is stopped by the Halt command, or when stopped

due to parity error or storage-protect violation.

Bit 1 - Enable 1800 (SRC)
When set (1), allows the Operation-Complete bit to present an
interrupt to the 1800; if not set (0), 1800 will not be interrupted

by Operation-Complete.

Bit 2 - Enable PDP-7 (SRC)
Allows Operation-Complete to interrupt the PDP-7 (analogous to

Bit 1).

Bit 3 - Attention 1800 (*SRC)

When set, presents an interrupt to the 1800.

Bit 4 - Attention PDP-7 (*SRC)

When set, presents an interrupt to the PDP-7.

Bit 5 - 1800 Resolution (R)
Is set only by Test & Set command from the 1800, and only if
Bit 6 is not set. It is a signal to the software that the 1800 has

"logical control" of the Interface, but has no effect on the Interface

23

24

other than, if set, to prevent the setting of Bit 6.

Bit 6 - PDP-7 Resolution (R)
Signal that the PDP-7 is controlling the Interface; can be set

only by Test & Set command from the PDP-7, and only if bit 5 is not set.

Bit 7 - Run (-)

Is turned on by the Interface whenever a block transfer is in progress.

Bit 8 - Transfer Direction (SRC)

Controls the direction of data movement during block transfers;

0 => PDP-7 to 1800, 1 => 1800 to PDP-7.

Bit 9 - Mode (SRC)
Determines whether block transfers operate in the 16/16 or 18/16

mode, i.e., whether word-for-word or packed mode is used.

0 => 16/16, 1 => 18/16.

Bit 10 - Unused (SRC)

This bit is unassigned.

Bit 11-15 - Attention Code (SR)
Each of these 'bits" is actually represented by two flip-flops, one

of which is set by the 1800 and read by the PDP-7, the other set by the

PDP-7 and read by the 1800. This section of the Status Register is
therefore "full-duplex'". Each computer can set or reset the bits it
presents to the other computer, but can only read the bits presented by
the other‘computer to it. The Clear Attention Code command resets the

"outbound" Attention Code bits of the computer issuing said command.

2.2.2 Cbmmands

Because of the symmetric design of the Interface, the following
command descriptions apply to both the 1800 and the PDP-7, except as
noted. Each command is represented by an IOT instruction on the PDP-7,
and by the right-hand half of an IOCC on the 1800. READ commands cause
data to be transferred from the Interface to the accumulator on the PDP-7,
or to core storage at the address specified in the left-hand half of an
IOCC on the 1800. WRITE commands are the inverse of READ, i.e., data goes
to the Interface register(s) from either the PDP-7 accumulator or the 1800
core storage. The SENSE command exists on the 1800 only; it is identical
to READ, except that data is routed to the accumulator instead of core
storage, and the left-hand side of the IOCC is consequently ignored.

The commands which access the Interface registers are termed
"programmed transfers", to distinguish them from "block transfers' which,
once initiated, require no programmed intervention from either computer.

For compactness, the following abbreviations will be used:

A - 1800 Address Register

B - PDP-7 Address Register

C - Unit Count Register

D - Status Register

Y - The accumulator, for commands from the PDP-7; the core

storage word addressed by the left half of the IOCC,
for commands from the 1800.

25

26

CLEAR A
CLEAR B
CLEAR C
The designated register is cleared to zero.
CLEAR D
The Status Register is cleared to zero except for bits 5,6, and 7,
which are unaffected. “
SET A
SET B
SET C
The designated register is logically OR'ed with Y; the result
appears in the register.
SET D
The Status Register is logically OR'ed with Y; the result appears
in the Status Register, exceptffdp bits 0,5,6, and 7, which are unaffected.
RESET D
The Status Register is logically AND'ed with Y (the complement of Y);
the result appears in the Status Register, except for bits 7 and 11 - 15,
which are unaffected.
Note that Set D and Reset D are defined in such a way that a single

mask can be used both to set and to reset bit(s) of the Status Register.

WRITE A
WRITE B
WRITE C
WRITE D

These commands are obtained by coding the bits for both €lear and
Setain the same command; they take advantage of the fact that both Clear

and Set can be performed in one Interface cycle, with the Clear operation

preceding the Set.

READ A
READ B
READ C
READ D

27

The contents of the designated Interface register are stored in Y;
the register is unaffected.
SENSE A
SENSE B

SENSE C
SENSE D

(1800 .only) The contents of the designated Interface register are
loaded into the 1800 accumulator.
CLEAR ATTENTION

The Attention Code (bits 11-15 of the Status Register) presented to
the other computer is cleared to zero; the code read by the computer issuing
the command is not affected. (Recall the dual nature of the Attention
Code (see Section 2.1.1.))

TEST § SET

(PDP-7) Sets the PDP-7's resolution bit (bit 6 of the Status Register)
if and only if the 1800's bit (bit 5) is not 1. If successful, causes the
PDP-7 to skip the next instruction.

(1800) Sets the 1800's resolution bit (bit 5 of the Status Register)
if and only if the PDP-7's bit (bit 6) is not 1. This command includes
Sense D, so that the contents of the Status Register are automatically
placed in the accumulator immediately after the test/set is performed.

The programmer can then by shifting or masking determine whether the
Test & Set was successful.
TEST & SET (PENDING)

(PDP-7) When, subsequent to the execution of this command, the 1800's
resolution bit (bit 5 of the Status Register) becomes zero, the following
bits of the Status Register are set: bit 0 (Op-Complete), bit 4 (Enable

PDP-7), and bit 6 (PDP-7 Resolution). This effectively '"seizes'" the

28

Interface for the PDP-7 and notifies the latter by an interrupt. If bit 5
is zero when this command is issued, then bits 0,4, and 6 are set immediately
and, in addition, the PDP-7 skips the next instruction.

(1800) When, subsequenttto the execution of this command, the PDP-7's
resolution bit (bit 6 of the Status Register) becomes zero, the following
bits of the Status Register are set: bit 0 (Op-Complete), bit 3 (Enable
1800), and bit 5 (1800 Resolution). This effectively "seizes" the Interface
for the 1800 and notifies the latter by an interrupt. If bit 6 is zero
‘ when this command is issued, bits 0,3, and 5 are set immediately.

START

Causes block transfers to commence as specified by the contents of

the four Interface control registers. |

HALT

Causes block transfers to stop the next time the Unit Count Register
is decremented. The control registers will reflect the status of the
transfer correctly, so that it may be resumed by a Start. The Operation-Complete
bit is not set when a transfer is stopped .in this way.

BLAST

Resets all Interface registers and control circuits to the zero or
idle state. Any data transfer in progress will be halted immediately
(and not necessarily correctly), and any Test & Set (Pending) will be
cleared.

SET ATTENTION

This command is obtained by doding the bits for both Clear Attention
and Set D in the same command. It allows the Attention Code to be set
independently of the rest of the Status Register. (Note that the Attention

bit can be set simultaneously, if desired.)

29

SKIP ON OP-COMPLETE

(PDP-7 only) Causes the PDP-7 to skip the next instruction if the
Op-Complete bit (bit 0 of fhe Status Register) is set.
SKIP ON ATTENTION

(PDP-7 only) Causes the PDP-7 skip the next instruction if the
Attention PDP-7 bit (bit 2 of the Status Register) is set.
SENSE INTERRUPT LEVEL

(1800 only) When issued from interrupt level 1 (recognition of which
is wired into the Interface), this command causes the Interface to present
interrupt-identification data to the 1800; this data appears in the accum-
ulator as part of the Interrupt Level Status Word. The Interface presents

the constant 4000, if the Attention 1800 bit is on, 200016 if the Op-Complete

16

bit is on, 6000,, if both are on, and 0000 if neither is on. This data is

16
OR'ed by the 1800 with similar data from other devices (if any) on interrupt

level 1 to form the ILSW.

30

3. ENGINEERING DESCRIPTION

This section describes the Interface from the logic designer's point
of view. A general introduction to the function of most important circuits
in the Interface, it is intended primarily for maintenance personnel.
However, the detailed execution sequences of some commands may occasionally
be of help to the programmer. More detailed discussion, specifications,
and timing information will be found in the Interface Maintenance Manual,
published separately.

Logically, the Interface consists of four programmer-addressable registers
(1800 Address, PDP-7 Address, Unit Count, Status) and one large Data or Shift
Register, plus associated control circuits. Physically, the Interface
contains 12 flip-flop registers: the five mentioned above, plus four Data
Buffers (one in each direction for both the 1800 and PDP-7), one Command
Buffer (for the 1800), and two Counters (to control the Shift Register).
Digital Equipment Corporation M Series logic modules are used for these,
and for all control and timing logic. Some W Series modules are used as
level converters to the PDP-7; specially fabricated modules using DEE
boards and IBM SLT Series circuits serve as level converters to the 1800.
Most of the logic is supplied by internal power supplies, but small amounts

of power are also drawn from each computer.

3.1 Programmed Transfers

Because the Interface, as aplI/O device, is addressable by both the 1800
and the PDP-7, special timing problems arise. The two computers run asynchronousl

to each other, and it is not possible for an external device to stop the

31

clock of either machine. Since there is no way for a program running in

either computer to determine whether the Interface is ready to respond to
commands except by the issuance of a command, it follows that there must

be at least one command to which the Interface can respond properly when

issued by both computers simultaneously or in arbitrary time relation.

This requirement was met by designing the Interface to run asynchronously
to both computers, under control of its own internal clock. Data movement
within the Interface is timed by this clock; data flow between the Interface
and either computer is largely timed by signals from the computer. Some
of the Interface's laogic circuit are dedicated to either the 1800 or the
PDP-7, but common circuits are multiplexed during command execution so that
they appear to be available to both computers simultaneously. As a result,
the Interface can respond properly to simultaneous issuance of not only the
"minimal" command (Read/Sense), but also any other pair of commands not in-
herently contradictory (e.g., two Write commands addressing the same register.)
3.1.1 Internal Timing

The Interface's basic clock is an 8MH&. free-running oscillator, which
is started by manual depression of the panel START switch with the clock
switch in the RUN position. The clock output complements a PHASE flip-flop
every 125 ns., whose outputs are in turn connected to two pulse amplifiers.
Each transition of the PHASE FF triggers ane or the other PA, producing
pulses of 110 ns. duration. These pulses, which stand in complementary
phase relation to each other, are designated A PHASE and B PHASE. Thus,

a 110ns A PHASE pulse occurs every 250ns.; a similar B PHASE pulse also occurs
every 250 ns., but delayed 125ns. from A PHASE.

The outputs of the PHASE FF are also connected to two one-shots

32

each of which thereby produces a 60ns. pulse every 250ns. These pulses,
delayed by 50ns. so as to fall squarely within the corresponding PHASE
pulses, are designated A and B:STROBE (see Figure 3.1). The A and B
PHASE and A and B STROBE‘signals are distributed throughout the Interface
through parallel-fed power NAND gates to preserve synchrony, waveform, and
drive capability. “

The PHASE and STROBE pulses are the besic mulfiplexing mechanism whereby
the Interface executes both 1800 and PDPR7 commands simultaneously. During
A PHASE, segments of 1800 commands are executed, whilé B PHASE is reserved
for segments of PDP-7 commands. The overall rate is fast enough that even
a multi-step command can always be executed within the "window'" allowed by
the issuing computer. Typically, an operation is set up by the PHASE signal
(which acts as a level, rather than a pulse, relative to the STROBE) and
clocked by the STROBE.

(The Block-Transfer circuits also make use of the PHASE and STROBE
signals, but simply for timing rather than multiplexing. Those operations
involve different circuitry, and proceed sometimes in parallel with the
execution of programmed commands.)

Sequencing of operations during a particular 1800 or PDP-7 command
is controlled by the 1800 or PDP-7 Period Counter, respectively. These
"counters" are actually shift registers whose left-most bit is set to 1
upon receipt of a command from the corresponding computer. Every 250ns.
thereafter the counter shifts the bit one position to the right, providing
a sequence of distinct periods during the course of each command,

(The use, if any, to which these periods are put depends, of course, on the
command.) Eventually the bit shifts out the right-hand end of the register,

which then remains zero until the start of the next command. The transition

~

1800 Period n

33

p)
1800 Period n+l
—
l A Phase
A Strobe
l PDP-7 Period m
—
B Phase
B- Strobe
} t 3 t t f
0 50 100 150 200 250
nanoseconds
Figure 3.1: Schematic representation of Period, Phase,

and Strobe timing relationships

34

from one period to the next is triggered by the "opposite' PHASE pulse,
e.g., the 1800 Period Counter shifts during B PHASE, thereby ensuring that
all gates enabled by the new period will have settled by the time the
corresponding PHASE/STROBE come along.

3.1.2 External Timing: PDP-7

The PDP-7 addresses the Interface by means of "slow-cycle'" IOT ¢ -
instructions of 3.75usec. duration*. The Interface decodes the instruction
directly from the Memory Buffer whenever the IOT signal line is asserted.
(This signal, from the PDP-7's own instruction-decoding circuits, is not
normally brought out to I/O devices.) Device selection codes SX (i.e.,

50 to 57) octal have been assigned to the Interface; therefore, any PDP-7
instruction of the form 7YSXXX (octal), where Y = 0,1,2, or 3 and

X = any digit, will be interpreted as an Interface command. (See Appendix B
for bit assignménts.) The T0P lines from the PDP-7 are ignored.

The conditions IOT+ (device 5X)+A PHASE set the '"PDP-7 Instruction"
(PDP7-1) FF, which then causes the PDP-7 Period Counter to be initialized.
Period § is not used; Periods 1,2,3, and 4 are used as required by the command.
Successive A PHASE pulses clock the transitions from one period to the
next; within a period, events happen on B PHASE and/or B STROBE. The fall
of the IOT signal from the PDP-7 resets the PDP7-I FF, ending the execution
sequence. Note: because the PDP-7 and Interface are asynchronous, Period
1 may begin anywhere between 150 and 400ns. after the assertion of IOT,
depending om whether the latter just catight or just missed an A PHASE pulse.

Logically, the PDP-7 communicates with the Interface control registers.

*
Normal-cycle IOT's, of 1.75usec. duration, would work also. The PDP-7

is held permanently in the slow-cycle mode. (for IOT's) by other attached
equipment.

35

through its accumulator. Physically, the Data Buffers are interposed to
guarantee sufficient settling time for the signal levels. On transfers

to the PDP-7, the selected register is gated to the Interface-PDP-7 Data
Buffer (I-PDP7DB) via the Interface Out Bus (IOB); the output of the

I-PDP7DB is presented to the Data Collector bits 2-17 through level converters.
After a sufficient settling interval (during thch the 1800 may be accessing
the Interface) the Interface asserts the STROBE AC IN line, causing the levels
at the Data Collector to be set into the accumulator.

For transfers from the PDP-7, the low-order 16 bits of the Data Distributor
are continuously connected to the PDP7-Interface Data Buffer (PDP7-IDB)
through level converters. During Period 1 this data is clocked into the
PDP7-IDB; on subsequent periods the data is transferred to the selected
register(s) via the Interface In Bus (IIB).

3.1.3 External Timing: 1800

The 1800 addresses the Interface by means of the XIO instruction.

Within the 1800, this instruction refers to a two-word Input-Output Control
Command (IOCC), of which the right-hand word contains control information
and the left-hand word a memory address (sometimes not used). Not counting
fetch time, the instruction takes at least two memory cycles of Zusec.
duration each. During the first cycle, called Control Cycle, the control
word (right half of IOCC) is placed on the 1800 OUT BUS while the CONTROL
CYCLE line is assertéd. The control word includes a device selection code
along with other information specifying the operation to be performed

(See Appendix B for bit assignments). The second cycle, Data Cycle, does
not necessarily occur immediately after Control Cycle. When it does occur,
the DATA CYCLE line is asserted and data is either placed on the OUT BUS

or expected on the IN BUS, depending on the command. It is the responsibility

36

of the device to retain enough information from Control Cycle to resfond
properly during Data Cycle. (Note that this situation differs from the
PDP-7, where the IOT instruction remains available on the MB throughout
execution of the commard - but at a considerable increase in cabling require-
ments.)

During Control Cycle, bits 0-4 of the OUT BUS contain the device
selection code ("Area code" to IBM); the Interface has been assigned code
101002. Consequently, the Interface samples these bits whenever the condition
CONTROL CYCLE*B PHASE+T4 is true. Recognition of the Interface selection
code causes the '"1800 Instruction'" (1800-I) FF to be set, which then causes
bits 5-15 of the OUT BUS to be strobed into the 1ll-bit Command Buffer (CB).
In addition, this causes the 3-bit 1800 Period Counter to be initialized.
Period § is not used; successive B PHASE pulses will advance (shift) the
counter thwough periods 1 and 2, then clear it by shifting the bit out the
right end.

For commands involving bit Set or Reset (e.g., Write A, Set D, Reset D),
the 1800 Period Counter is re-initialized during Data Cycle. Thus, there
can be as many as four distinct periods for command execution: periods 1
and 2 of Control Cycle, and periods 1 and 2 of Data Cycle.

The eight time pulses, TP through T7, are generated as required by the
Interface from the 1800's TIME PULSE A, B, and C lines. Synchronization
between the 1800 and the Interface is generally controlled by these puises.

The Interface registers communicate with the 1800 IN BUS and OUT BUS
through the Data Buffers. For transfers to the 1800, contents of the selected
register are transferred to the I-1800DB via the Interface Out Bus and the
I-1800DB gated to the 1800 IN BUS, all during Data Cycle. Simultaneously,
correct parity is generated and placed on the PARITY lines. For transfers

from the 1800, the 1800 OUT BUS is strobed into the 1800-IDB; the

37

contents of the latter are then gated to the selected register(s) via the
Interface In Bus during period 1 or 2, depending on function. At time T6
of Data Cycle, the 1800-I FF is reset, terminating the command sequence.
3.1.4 Read/Write: PDP-7

Read

The condition MB5(0)°MB9(0) is decoded as a Read command during period 1.
This condition is AND'ed with the register selection bit (MB10, ~ .
MB11, MB12, MB13 for A, B, C, and D registers respectively) to produce a
level which enables the out-gating of the selected register. The next
following B PHASE gates this data to the Intefface Out Bus, where it is applied
to the inputs of both I-1800DB and I-PDP7DB. However, B STROBE is applied
to I-PDP7DB only, thereby clocking the register data into the Data Buffer.
Period 2 triggers a one-shot of 1.lusec. duration which gates I-PDP7DB
to the Data Collector, allowing plenty of time for the levels to stabilize.
During period 4 a second one-shot of 260ns. duration is fired to pulse the
STROBE AC iN line; this signal triggers a pulse amplifier (type W640, located
physically within the PDP-7) which causes the Data Collector to set the
accumulator, (Recall that bit 14, when set, causes the PDP-7 to clear the
accumulator at the beginning of the IOT instruction - approximately period 1.)
If bit 4 is set on a Read command, the Attention PDP-7 FF (bit 2 of
the Status Register) is reset during period 2.

Write

The commands Clear, bit Set, and bit Reset are all performed as part of
the Write function. (As normally used by the programmer, Write includes
both Clear and Set.) The Interface decodes MBS (0)*MB9 (1) as a Write command
during period 1, and if MB15 (Reset) or MBl6 (Set) is on, also uses this

period to strobe accumulator data from the Data Distributor into PDP7-IDB.

38

If MB17 (Clear) is set, the selected register(s) (as determined by MB10-13)

are cleared during period 1. Note that any or all of the four control registers
may be selected at the same time for Clear and/or Set functions, except

that registers A, B, and C also require the condition RUN(0) for selection

on a Write command; That is, Write operations on registers A, B, and C

are suppressed while block transfers éré'in progress. The Reset function
applies to the D(Status) register only, and in part accounts for differences

in gating and flip-flop type between the D register and the othgrs.

Bit Set and Reset operations are performed during periods 2 and 3,
respectively. In-gating for the selected register(s) and out-gating for the
PDP7-1DB are enabled; B PHASE places the contents of PDP7-IDB on the registers'
ihputs via the Interface In Bus, and B STROBE clocks the data into the
register(s).

3.1.5 Read/Write: 1800

Read and Sense

These commands are treated similarly by the Interface, and in general
are similar to the Read command from the PDP-7, The Interface decodes
CB5(p), CB6(1), CB7(P) as Read and CB5(1), CB6(1), CB7(1) as Sense. CB8-11
provide register selection (see Appendix B). The contents of the selected
register are gated to the I-1800DB via the Interface QutfBus at Tl of Data
Cycle. During TP-T6 of Data Cycle the contents of I-1800DB are placed on
the 1800 IN BUS and the PARITY line for each byte asserted as appropriate.
(Because the 1800 samples its IN BUS at T3, the transfer proceeds correctly
even though the initial contents of I-1800DB, ét TP, are incorrect. This
strange - to say the least - timing is the result of a design change to

correct another problem, and is accepted purely for pragmatic reasons.)

39

As with the PDP-7, the 1800 commands Clear, Set, and Reset are all part
of the basic Write function. The Interface decodes CB5(0), CB6(0), CB7(1)
as Write, while CB12-15 specify the sub-function. The Clear (CB15) and Clear
Attention Code (CB12) operations are done during period 2 of Control Cycle.
Data is available on the 1800 OUT BUS ét T4 of Data Cycle, and is strobed
into the 1800-IDB by a pulse delayed some 75-225ns. from T4. If Set (CB14)
or Reset (CB13) are specified, the I-1800 DATA FF is set at T4 of Data Cycle,
causing the Period Counter to be re-initialized. Bit Set operations are done
during period 1 of Data Cycle, bit Reset during period 2. The PERIOD, A PHASE,
and A STROBE signals are used analogously tovPERIOD, B PHASE and B STROBE for
the PDP-7. The restrictions mentioned for PDP-7 Write operations also
hold for 1800 Write; of course, Reset applies to the D register only, and the
A, B, and C registers are protected against Write commands when the RUN FF
is on.
3.1.6 Miscellaneous

Status Register

The Status ("'D") Register can be considered to consist of one 11-bit
register and two 5-bit registers, of which either computer can access at
most 16 bits at a time. The 11-bit section is a collection of control
flip-flops, all of which can be read but only some of which can be set and/or
cleared under program control. See Appendix B for specifics.

Each of the 5-bit "Attention Code' sections can be cleared and set only
by one computer, énd read only by the other. When the 1800 writes or clears
the Status Register, it alters the PDP-7 Attention Code Register; but when |
it reads the Status Register, bits 11-15 come from the 1800 Attention Code

Register, and conversely for the PDP-7. The Attention Code Registers

40

provide two one-way communication paths.
The construction and gating of the Status Register are different
from the A, B, and C Registers because
1) its bits can.be individually set and/or reset;
2) its bits are used in various ways to control other circuits;
3) it can be accessed (i.ef, altered) not only by both computers
but also by the Interface itself.

Resolution Circuits

The PDP-7 Test § Set command is decoded from MBS5(1)+MB13(1) and
is performed during period 1. The signal B PHASE is AND'ed with the
condition DR5(0)+DR6(0), i.é., both resolution bits off, and if the result
is true then B STROBE sets DR6. Simultaneously thé PDP-7 SKIP line is
pulsed, performing the ''skip on success" part of the command.

Test & Set from the 1800 is accomplished similarly. The command
is decoded as an option on the Sense D command (CB13(1)) and is performed
during 1800 period 1 of Control Cycle. The A PHASE signal is AND'ed
with DR5(0)+*DR6(0), and if true, A STROBE sets DR5. Since the Sense
command gates the selected register to the I-1800DB during Data Cycle, the
result of the Test § Set operation is immediately available to the 1800
programmer.

Because the 1800 tests and (maybe) sets only during A PHASE, and the
PDP-7 only during B PHASE, the operation is always resolved unambiguously
in favor of one machine or the other.

The Test & Set (Pending) command is performed whenever the regular
Test & Set is decoded (as above) with, in addition, MB12 (PDP-7) or
CB14 (1800) set. From the PDP-7 the PDP7 T&S PENDING FF is set during
period 1, any phase. This FF is AND'ed with DR5(1) whenever the condition

is true, i.e., 1800 resolution bit is off, a pulse amplifier is fired which

41

sets DRP, DR4, and DR6 (Op-Complete, Enable PDP-7, and PDP-7 Resolution). A
second pulse amplifier then resets the PDP7 T§S PENDING FF.

Similarly, this command from the 1800 sets the 1800 T&S PENDING FF during
period 1 of Control Cycle, any phase. The FF is AND'ed with DR6(0) to
produce a condition which sets DR@, DR3, and DR5 (Op-Complete, Enable 1800,
and 1800 Resolution); the FF is then reset as above.

Since the immediate form of the command is included within Test & Set:
(Pending), there is no ambiguity even if the latter command is issued
simultaneously by both computers. Only one computer '"seizes' the Interface
and is interrupted. The loser's request remains pending. Should this
command be issued by the PDP-7 when the 1800 Resolution bit is not on, the
skip will occur in addition to the interrupt.

Blast

The Blast command, decoded from MB5(1)+MB16(1) on the PDP-7 or as a
"control" function (CB5(1), CB6(®), CB7(p)) with CBL5 set on the 1800, causes
the Interface RESET line to be pulsed. All registers and counters are set
to zero and all flip-flops are set to their initial state. (The Op-Complete
bit, DR, is normally set by the clearing of the Run FF, DR7, at the conclusion
of a block-transfer. Circuit delays here outlast the Blast-induced reset
pulses, so that if Blast is issued while Run is on, Op-Complete will be
set. A second Blast takes care of this problem) The same RESET line pulsed
by Blast is also pulsed from the PDP-7 POWER CLEAR line (activated by a Clear
All Flags IOT instruction or the power-on sequence), the 1800 D.C. RESET
line (activated by the power-on sequence or depression of the Reset button
on the 1800 panel), and the Reset lever on the Interface panel. A Reset

never stops the Interface basic clock, however.

42

The Blast is done during PDP-7 period 1 or 1800 period 1 of Control
Cycle. This command self-destructs.

Start and Halt

These commands are discussed in Section 3.2.
Skip

The two PDP-7 skip commands are decoded from MB5(1) and either
MB10(1) (Skip on Op-Complete) or MBL1(l) (Skip on Attention). During period]

MB10(1)+DR@(1)+MB11(1)*DR2(1) causes thé1SKIP line to the PDP-7 to be
pulsed, incrementing the PDP-7 Program Counter.
Interrupt

Interrupting the PDP-7 is simple: the condition DRP (1)+DR4 (1)+DR2(1)
causes the INTERRUPT line to the PDP-7 to be asserted.

1800 devices can present interrupt requests only in response to a
polling signal from the CPU. Moreover, a device must be prepared to provide
some identification information in addition to the simple interrupt request;
this frees the 1800 - unlike the PDP-7 - from the need to interrogate each
device in turn.

The Interface has been assigned to interrupt on priority level 1; therefore,
the Interface AND's the condition DRP(1)+DR3(1)+DR1(1) with the INTERRUPT POLL
line from the 1800, and if the result is true, asserts 1800 IN BUS 1. (Level
p devices would assert IBP, level 2 IB2, and so forth.) Eventually the
CPU will recognize the interrupt request, and the interrupt-handling subroutine
will issue a Sense Interrupt Level Status Word (Sense ILSW) command. This
command is addressed to all devices on the currently-recognized priority
level, and hence has no device-selection code; it is recognizable only by
virtue of its "function" code (bits 5,6, and 7), which is 3(0112). Since

the devices have no way of knowing which priority level the CPU is currently

43

honoring, that information is also coded in bits 11-15 of the command
(all this appears on the OUT BUS during Control Cycle).

Just how, one might ask, is this information coded? A very good
question, one which moves the authors to acknowledge the admirable
cleverness wifh which IBM has concealed this information in the (ir-)
relevant publications - if it is there at all. An empirically derived
best guess is that the code is the same as the address of the memory
location through which the interrupt forced-branch occurs. That is, each
priority level is assigned a word in a low-core transfer vector; the word

for level 1 is at address 000C,., and a Sense ILSW from this level produces

16
01100, in bits 11-15 of the control word.

2

The Interface, therefore, decodes these bits as a sort of secondary
device-selection, during T4 of Control Cycle. The OUT BUS is strobed
into the Command Buffer for display only; and the Period Counter is not
initialized. Instead, a SILSW FF is set. During TP-T5 of Data Cycle the
Interface asserts IN BUS bit 1 if the Attention condition (DR1(1)) is true,
and/or bit 2 if the Op-Complete condition (DRP(1)°DR3(1)) is true. These
two bits are OR'ed into the Interrupt Level Status Word for level 1 by the
1800 CPU; the operating system, TSX, interprets these as though from two

separate devices. The SILSW FF is reset at T6 of Data Cycle, ending the

command sequence.

3.2 Block Transfers

In block-transfer operations the Interface alternately requests
cycle-steals from the 1800 and data-breaks from the PDP-7 (or vice versa,

depending on direction of transfer). Each data word is read (stored)

44

at an address specified by the 1800 Address Register or the PDP-7 Address
Register, and passes through the Interface via the Shift Register. The
total number of words transferred is controlled by the Unit Count Register.
Thevprocedure is described in detail on the following pages.

The reader should be aware that the core storage location addressed
during an 1800 cycle-steal is controlled by the Channel Address Register
(CAR). (Each cycle;steal priority level - not to be confused with interrupt
priority level - has its own CAR. The Iﬁterface uses cycle-steal priority
level zero, interrupt priority level one.) During the initialization
sequence the contents of the 1800 Address Register are transferred to
the CAR; both are incremented (AR by the Interface, CAR by the 1800)
on every cycle-steal thereafter, so that they "track' each other. But
the actual addressing of memory is done by the CAR.

A list of abbreviations used in the following descriptions will be
found at the end of Section 3.

3.2.1 Initialization
1. Start (GO) sequence

A PDP-7 Start command is decoded from MB5(1)<MB15(1); the 1800 Start
is a "control" function with bit 13 set. Either command sets the GO FF
during its respective period 1. As soon as the Interface is not busy

with a command from either machine, i.e., when the condition

GO(1)-PDP7-11800-1 obtains, the GO' FF is set, producing the GO pulse
via a pulse amplifier. (The GO' FF is used to prevent redundant GO
pulses; logic 4 GO-GO doesn't work too well...)

The GO pulse does the following:

a) gates the 1800 Address Register to the Interface-1800
Data Buffer;

b) clears the A and B Counters;

c) clears the Shift Register;

d) requests a cycle-steal from the 1800 (by setting the

CS REQ FF, which asserts the CS REQ line).

45

GO => AR -~ I-1800DB
0 - A CNTR, 0 » B CNTR
0 » SR
1 > CS REQ FF
2. When the 1800 grants the cycle-steal (in response to the CS REQ), it
asserts the CS ACK line. ACK signals the Interface to start the LOAD CAR
sequence, in which the contents of the i-lSOODB (loaded from AR at step 1(a)
above) are gated to the 1800 Channel Address Register assigned to the Interface.
This transfer is accomplished as follows:
a) ACK-GO(1) places the contents of the I-1800DB on the 1800 IN
BUS, and asserts CS CONTROL 1 and 2 during T1-T6 of the CS8
cycle. This signals the 1800 to load the CAR from the IN BUS.
I-1800DB ~ 1800IB
1-Cs1,1~»CS2
1800IB + CAR (within 1800CPU)
b) During this same CS cycle the A or B Shift Counter is loaded
(both were set to zero at step 1(b) above) as determined by
the transfer direction and mode:
ACK-GO(1)+T1+TD(0) => 16 » A CNTR
ACK+GO (1)+T1+TD(1)*MODE (0) => 16 + B CNTR
ACK+GO(1)+T1-TD(1)+MODE(1) => 18 + B CNTR
At time T1 of this and every CS cycle, CS REQ is dropped to prevent
ocourrence of a second CS cycle.
ACKeT1 => 0 -~ CS REQ FF
3. At the beginning of T3 of the GO sequence CS cycle, the RUN FF is set,
The trailing edge of TS5 reséts the GO and GO' FF's, thus ending the GO
sequence.
"ACK*GO(1)*T3 => 1 - RUN FF

ACK+GO(1)*T6 => 0 + GO, 0 » GQ' FE's

46

3.2.2 Serial/Parallel Data Flow

1. Regular Direct Memory Access {(BMA) operations commence with the
setting of the RUN FF at the end of the GO sequence. Data transfers between
the Interface and the 1800 and between the Interface and the PDP-7 occur
in parallel, with path widths of 16 and 18 bits respectively. Within the
Interface, data move serially through the»Shift Register under control of
the A and B Counters. The important events during this process can be
concisely expressed as follows:

while RUN =1

A CNTR = 0 => 1 -+ 1800 CS REQ FF
16 ~ A CNTR
B CNTR = 0 => 1 » PDP7 BRK REQ FF

n - B CNTR
(n = 16 or 18, depending on MODE)
(A CNTR = 0)* (B CNTR = 0) => decrement CR

CR =0 =>0-> RUN FF, 1 » OP-COMPLETE FF

Additional logic, not shown above, is employed to synchronize the shifting
and DMA operations and to handle initiation and termination special cases.
More detailed operation of these circuits can probably best be illustrated
by example, so the following discussion assumes a transfer from the 1800
to the PDP-7 in 18/16 mode.

2. During the GO sequence, the RUN FF is set and the A CNTR cleared.
RUN(1)+ (A CNTR = 0) places a level on the input to the CS REQ ENB FF, which
is clocked by the trailing edge of the next following B STROBE. The setting
of this FF produces two pulses which

a) 1load the A CNTR with 16

b) set the 1800 CS REQ FF

16 -~ A CNTR
1 -~ 1800 CS REQ FF

47

3. The CS REQ FF asserts the CS REQ line to the 1800, which replies with
CS ACK. This ACK signals the Interface to begin a CS Write Cycle (i.e.,
out of the 1800). At Tl the CS REQ FF is cleared; at T4' the 1800 OUT BUS
(available at T4-T7) is gated to the 1800 side of SR. The leading edge

of T5 clocks the OB data into SR After a 300ns. delay to allow

18-33"
for settling, an 1800-Interface Data Completed pulse (from the trailing
edge of T5) sets the 1800 DATAIEX OVER'FF, w£ich increments the AR and
places a level on the "reset" input of the 1800 CS REQ ENB FF. The
trailing edge of the next B STROBE' resets this FF, which in turn resets
the 1800 DATA EX OVER FF. This completes the transfer of the first data
word from the 1800 to the Interface Shift Register.
| ACK*GO*TD (1) (T4') => OB + SRyg_z3
4, Shift pulses from the 4 MHz basic clock (A STROBE) are enabled by the
conditions (1800 CS REQ ENB FF = 0)+ (PDP7 BRK REQ ENB FF = 0) and RUN<GO.
In addition, the MODE FF determines whether bits shifted out of position
33 of SR will be shifted in at position 0 or 2 (recall that SR is actually
a circular register); MODE(1) enables shifting into SR bit 0, while
MODE (0) enables shifts to SR bit 2. Approximately 100ns. after being enabled,
the first shift‘pulse reaches the SR. (Note that the RUN:GO condition is
present during almost all of a block transfer; therefore the determining
factors with respect to shifting are the CS/BRK REQ ENB FF's, which are
reset at the completion of every cycle-steal or data-break.) Each shift
pulse (A STROBE') causes the entire SR to shift to the right one bit.
Corresponding to each shift pulse is a decrement-counters pulse (A STROBE')
which decrements both A and B Counters.,
During shifting,
A STROBE' => SR; - SR;,;, SRzz > SRy or SR, depending on MODE

B STROBE' => decrement A CNTR, B CNTR

48

5. After 16 shifts, the A CNTR will have been decremented to 0, the B CNTR
to 2 (recall that with the assumed TD and MODE, the B CNTR was initialized
to 18 during the GO sequence). The condition (A CNTR = 0) places a level
on the "set" input of the CS REQ ENB FF; the latter is clocked by B STROBE'
whereupon further shifting is inhibited and the CS REQ FF set.

(A CNTR = 0)+B STROBE' => 1 » ES REQ ENB FF

1 ~ CS REQ FF

6. The 1800 responds to CS REQ with CS ACK and the second data word.
(Each cycle-steal automatically increments the CAR, which determines the
memory location to be accessed during the cycle-steal cycle) This second
data word is loaded into SR18—33 and the AR incremented as described in
paragraph 3 above. Completion of the cycle-steal cycle allows shifting
to resume, and after two shifts the B CNTR contains 0, the A CNTR 14.
7. The condition (B CNTR = 0) sets the 7 BRK REQ ENB FF and, after a
250ns. delay to allow settling of the SR0-17 data at the input of the
PDP-7 multiplexer, sets the 7 BRK REQ FF and reloads the B CNTR. In contrast
to the situation with the 1800, the contents of SRO_17 and BR are continuously
presented (through level converters) to the PDP-7 Data Multiplexer. During
the break cycle granted in response to the assertion of BRK REQ, the multiplexer
samples its DATA IN lines and places their contents in the Memory Buffer;
it also samples its ADDRESS IN lines and gates their contents to the Memory
Address Register. The Interface TD FF (bit 8 of the Status Register), which
in this example is set, causes the PDP-7 multiplexer's TRANSFER DIRECTION line
to be asserted, so that during the break cycle the contents of the Memory
Buffer are stored at the location specified by the Memory Address Register.

(B CNTR = 0) => 1 -~ 7 BRK REQ ENB FF

(7 BRK REQ ENB FF = 1) => 1 » 7 BRK REQ FF

n » B CNTR

where n = 16 or 18, depending on MODE

49

8. The Data Multiplexer returns a DATA ACCEPTED pulse to the Interface while
strobing the SR data into the Memory Buffer. If the DATA ACCEPTED pulse is
taken as the signal to resume shifting, errors occur due to skew. Consequently,
DATA ACCEPTED sets a DATA ACC FF within the Interface, which is AND'ed
with PDP-7 timing pulse T6 to produce a pulse which

a) increments the BR, and

b) sets the 7 DATA EX OVER FF

DATA ACCEPTED => 1 - DATA ACC FF

DATA ACC(1)+T6 => increment BR
1-+ 7 DATA EX OVER FF
This guarantees that the SR remains undisturbed for some 500ns. after
receipt of DATA ACCEPTED.
9. The setting of the 7 DATA EX OVER FF resets the 7 BRK REQ ENB FF which,
with the condition (1800 CS REQ ENB FF = 0), allows shifting to resume.
After 14 shifts, the A CNTR will have been decremented to zero, whereupon
another 1800 cycle-steal occurs as described in paragraphs 5 and 6 above.
This sequence tontinues, with 1800 cycle-steal occurring every time the
A CNTR reaches zero and PDP-7 data breaks occurring whenever the B CNTR
becomes zero.
10. Whenever both Counters are zero simultaneously. (after 9 1800 words, 8
PDP-7 words), the Unit Count Register (CR) is decremented and the entire
process repeated.
(A CNTR = 0)+ (B CNTR = 0) => decrement CR.
11. When the Unit Count Register reaches zero, the RUN FF is reset and the
Op-complete bit (bit O of the Status Register) is set. Because this happens
during the last data break, special provision is made to ensure that the
latter is completed properly.
(CR = 0) => 0 > RUN FF

1 > DR

50

12. A transfer in the other direction, from the PDP-7 tp the 1800, is handled

in much the same fashion. The GO sequence initializes the A"CNTR to 16,

the B CNTR to 0, at 1800 time T1; at T3 the RUN FF is set, whereupon the conditio
RUN(1)- (B CNTR = 0) causes the 7 BRK REQ ENB FF to be set and the B CNTR
reloaded. During the ensuing data break cycle, the PDP-7 loads its Memory
Buffer with the contents of the location addressed by the BR and returns

a DATA READY pulse‘to the Interface. The DATA READY pulse sets a DATA READY FF,
which gates the Memory Buffer output to the SRy_175 at PDP-7 time T6 this data

is clocked into the SR. This use of T6 for clocking provides about 500ns.
settling time after the receipt of DATA READY. Note that this sequence differs

from that of paragraph 7 (above) because the condition TD(0) causes the

Data Multiplexer TRANSFER DIRECTION line not to be asserted.
13. The clearing of the 7 BRK REQ ENB FF at the end of the break cycle allows
shifting to begin again. After the SR has shifted right 16 positions,
the A CNTR becomes zero, thereby causing the 1800 CS REQ FF to be set.
When the 1800 responds to CS REEQ with CS ACK, the Interface places the contents
of SR18=33 on the 1800 IN BUS during time T1-T5. The Interface also computes
and sends to the 1800 two parity bits (one for each byte of data), and
asserts CS CONTROL line 2. The latter signals the 1800 to perform a CS
Read cycle, in which the IN BUS data is stored at the memory location addressed
by CAR, after which the CAR is incremented.
14, The 16/16 mode is identical to the 18/16 mode, except that the B ENTR
is always loaded with 16 instead of 18. This means thét both A and B Counters
decrement to zero simultaneously, with the result that

a) 1800 cycle steals and PDP-7 data breaks occur at approximately

the same time, and
b) The Unit Count Register (CR) is decremented omce per 16-bit word

rather than once per 144-bit block.

51

As a special feature during 16/16 mode transfers into the PDP-7, the high=order
bit of the 16-bit word - bit 2 of the SR - is fanned out to bits 1 and O,
thereby ''propagating the sign'" so that tﬁés complement negative numbers

retain their value when mapped from 16 bits to 18 bits.

3.2.3 Abnormal Termination

Halt

The Half command is decoded from MBS5(1)+MB17(1) on the PDP-7, or from
a "control" function with bit 14 set on the 1800, Either command sets the
HALT PENDING FF during its respective period 1. HALT PENDING(1) is AND'ed
with the next succeeding DECREMENT CR pulse; the resulting pulse resets the
RUN FF, stopping further block-transfer activity. The A,B,C, and Shift
Registers are left in the proper state, however, for the block-transfer
to be resumed correctly by a START command. The resetting of the RUN FF in
turn resets the HALT PENDING FF.

Fault

A fault condition exists when either
a) A parity error or storage-protection violation eccurs on the
1800 during Interface operations, or
b) either computer attempts a Write (i.e., Set and/or Clear) command
on the A,B, or C registers while the RUN FF is on.
Occurrence of any of the above conditions sets one of four error FF's
within the Interface (PARITY ERROR, STOR PROT, PDP-7 ILLEGAL WRITE, 1800
ILLEGAL WRITE); the output of these FF's is OR'ed together and, as soon

as the Interface is not executing a command from either computer (i.e.,

PDP7I-1800I), sets both Attention bits in the Status Register and forces
a code of 2 or 3 into both Attention Code Registers. If the parity or store-protect
error occurred during a block-transfer operation (the most likely situation),

the RUN FF is reset, stopping the transfer immediately. Since these faults

generally require human intervention, the fault FF's can be displayed on
the Interface panel; but they can be reset only by a Blast command or

manual reset,

52

Table 3.,2: Signal Cables

Signal Names
I. PDP-7 - Interface

Buffered Accumulator 2-17 (0,1 not used)
Buffered Memory Buffer 0-17
T6, DATA ACCEPTED, DATA READY, POWER CLEAR, IOT

II. Interface - PDP-7

Data Collector 2-17 (to accumulator)

Data Address 3-17 (to multiplexer)

Data In 0-17 (to multiplexer)

SKIP, INTERRUPT, BREAK REQUEST, TRANSFER
DIRECTION, STROBE AC IN

PDP-7 Total:

III. 1800 -+ Interface

OuUT BUS 0-15

DATA CYCLE, CONTROL CYCLE, TIME PULSE A,
TIME PULSE B, TIME PULSE C, PARITY ERROR,
INTERRUPT POLL A, STORAGE PROTECT VIOLATION,
CYCLE STEAL ACKNOWLEDGE, D.C. RESET

IV. Interface - 1800
IN BUS 0-15
PARITY 0-7, PARITY 8-15, CYCLE STEAL
CONTROL @, CYCLE STEAL CONTROL 1,
CYCLE STEAL CONTROL 2, CYCLE STEAL REQUEST

1800 Total:

_I:I_ci. _o_f_ Lines

16
18

39

16
15
18

54

16

10

26

16

22

48

53

54

Abbreviations used-in Section 3:

1.

Genera

FF
REG
CNTR
DMA
cs
BRK
REQ
ENB
A

B

B n w unnnun oy

AR
BR
CR
DR
SR
MB
CAR

n - un uw o on

1

Register

I-1800DB
I-PDP7DB
1800-1IDB
PDP7-1DB

CB =
A CNTR
B CNTR
Xn =

Logic

P-Q
P+Q

P
P=>Q
X->Y

n->Y
Signal

X(1)
X(9)
Xn
IB
OB
IIB
I0B
ACK

na un n o on

L

Flip-flop

register

counter

Direct Memory Access

tycle-steal (1800 DMA)

(data) break (PDP-7 DMA)

request v

enable

the 1800, or pertaining thereto
the PDP-7, or pertaining thereto

S
1800 Address Register

PDP-7 Address Register

Unit Count Register

Status Register

Shift (Data) Register

PDP-7 Memory Buffer

1800 Channel Address Register

Interface - 1800 Data Buffer

Interface - PDP7 Data Buffer

1800 - Interface Data Buffer

PDP7 - Interface Data Buffer

Command Buffer

= A Shift Counter

= B Shift Counter

the nth bit of register X (where bit P is the leftmost)

event - P and event - Q

event - P or event - Q

not P (complement of P)

event - P causes event Q

contents of register or signal line(s) X

are gated to register or signal line(s) Y

the constant n is gated to register or signal line(s) Y

ines

the "1'" output of flip-flop X

the "P" output of flip-flop X

the nth line of a set of signal lines
1800 IN BUS

1800 OUT BUS

Interface IN BUS

Interface OUT BUS

(cycle-steal) Acknowledge

5.

55

Flip=flaeps

MODE = DR9 (16/16 or 18/16 bit)

D = DR8 (transfer direction)

RUN = DR7 (block-transfer in progress)
Timing

Signals sightly advanced or delayed from "standard" timing signals are
denoted by a prime, e.g., T4' is related to, but not identical with, T4,

Details will be found in the maintenance manual.

56

4, PROGRAMMING SUPPORT

4.1 Philosophy and Structure

There are three basic kinds of operations that a program may wish to
perform using the Interface: block transfer, issuing or handling attention
interrupts, and seizure of control over the Interface prior to the performance
of an extended control sequence. These ghree functions are common to both
machines; either may initiate any.of the control sequences at any time.
Since the hardware was designed to be controlled almost exclusively by
software (rather than containing hardware checks to lock out certain sequences),
programs must adhere to a consistent set of conventions in order to allow
each computer equal access without fear of interference by the other.

To this end, all Interface operations are performed through system

subroutines.

Section 4.1.1 describes the basic conventions used, the structure
behind the system routines, and some of the lowest level routines. Section
4.1.2 describes the features common to the routines in both machines for
performing the three basic operations. Sections 4.2 and 4.3 describe the
implementation of the programming support for each machine separately,
including detailed calling sequences for the routines described in 4.1.1

and 4.1.2.

57

4.1.1 Basic conventions and low level routines

There are two conventions necessary to maintain control over the
Interface. The first, already mentioned, is necessary so that the system
will know at all times the state of the Interface: all Interface operations
are performed through system subroutines. The second is: neither machine
will alter any of the Interface registers (except for attention code pro-
cessing) unless it has logical control of the Interface. This ensures that
Interface operations will ﬂot have to contend with interference from the
other machine. The second convention imposes the following standard oper-
ating procedure. First, if the Interface is under control of machine A,
machine B must wait for A to relinquish control (and vice versa) before it
(B) may do anything with the registers. Secondly, the controlling machine
has the responsibility of releasing centrol as soon as it is finished, to
allow the other machine access.

Both user and system routines-are expected to operate under these basic
conventions. If the user performs operations only through the system
routines, according to the rules below, he will implicitly obey these
conventions. Failure to observe them will certainly cause incorrect results,
and may even cause full scale system disaster, such as destroying the contents
of a disk.

In order to provide the maximum amount of processing power and Inter-
face control at the same time, Interface operations are performed under
interrupt control. This allows operations such as block transfers to be
performed concurrently with other program operations.

Interrupts are of two types: attention and op-complete. Attention

interrupts are handled in a straightforward manner. Issuing an attention

58

may be performed immediately and completely asynchronously with all other
operations since there are bits in the Interface Status Register used only
for attentions. Receiving attentions consists merely in reading the appro-
priate part of the Status Register. Section 4.1.2 discusses the routines
for performing these functions. No deep structure is necessary.

Op-complete interrupts may result from two different operations: as
the result of the completion of a transfer,:and as the result of a Test § Set
(Pending) instruction when control is finally assigned to the requesting
computer. These cases correspond to user requests for block transfers
or for Interface control. After the user program has made its request,
either of these operations may have to wait for completion if the other
machine has control or if there are other operations already being performed
by the same machine.

To allow concurrent processing when an operation may not be performed
immediately, the system maintains a queue of unfilled requests. When the
system receives a request which it can not execute immediately, it puts the
request on the Interface Function Queue (IFQ). The IFQ consists of a list
of Interface Control Blocks (ICBs). The ICB for an operation contains
all the information needed to perform that operation. Once the machine
gains control of the interface, it takes the first ICB from the IFQ and
starts the operation defined by that ICB. When the operation is finished,
the next operation on the IFQ is started according to the information
contained in its ICB, and so forth. When the end of the IFQ is reached,
the machine relinquishes Interface control.

There are‘two kinds of ICBs (although the structure is general),
corresponding to requests for transfers and for control. The user calls

the appropriate routine with one parameter, the address of the ICB

59

containing the pertinent information. The system routine adds additional
information to the ICB, calls another routine which enters it on the IFQ,
and then returns control to the user's program. Part of the information

in the ICB is status information maintained by the system. The user may
inquire about the status of the operation by calling a '"test" routine which
interprets the status information of the ICB given to it as a parameter.
The "test'" routine then returns an indication to the user's program.

Thus, normal user operating procedure for either transfers of for
control requests is to call the appropriate subroutine, and then to wait
for completion of the operation by repeated calls on the 'test" subroutine.

The ICB for a control request consists of two words, and the ICB
for a transfer consists of seven words. Both words of the ICB for control
requests and the first two words of the transfer ICB are used for system
information. Thus, for control requests, the user merely supplies the
address of a two-word block the system can use. For transfers, the user
fills in the last five words of the ICB with the information specifying
the transfer before he calls the transfer subroutine. These last five
words are described in Section 4.1.2.

The first word of the ICB is set ¢o a special value when it is inserted
on the IFQ, indicating that the function requested has not yet been completed.
When the function is completed, the first word is set to another special
value. (This word is also used as a link pointer to the next ICB on the
queue, if any.) The second word of an ICB is set by the first level routine
called by the user; i.e., it is set by either the transfer routine or by
the control request routine. The second word contains the address of a
subroutine to be called to initiate the operation represented by the ICB.

Thus, at some later time when the ICB rises to the top of the queue, the

60

IFQ processor knows:what routine to call to start the operation.

The action of this initiation subroutine is slightly different for
the two kinds of requests. For transfers, the initiation subroutine
actually starts the transfer based on the information contained in the
rest of the ICB. The Status Register is set so that when the transfer is
completed, an op-complete interrupt will occur. The IFQ processor will then
be reentered, the ICB of the transfer just completed with be marked as
finished, the next ICB taken from the list, and the process repeated.

For Interface control requests, however, the initiation subroutine
does not start any operation, and, as a result, no op-complete interrupt
occurs. (The IFQ processor must be restarted as specified below.) The
"initiation" routine merely marks the ICB for the control request as finished
and returns. At this point in time, Interface control still resides with
the machine, but no Interface operation is being performed. The user's
program, which has been waiting for the indication that the operation is
finished, will now receive that confirmation. The net result is that
Interface control is in the hands of the user. He may then direct operation
of the Interface (within the limits defined in Section 4.1.2). When the
user is finished with his control sequence, he must call a system routine
to relinquish control, This subroutine then restarts the IFQ processor
as if an operation-complete interrupt had occurred. The whole process is
then repeated for the next ICB on the queue.

This takeover of Interface control by a program allows for a more
extensive commﬁnication sequence than the simple functions of block transfer
and attention interrupt. For example, once a program has gained control,
it may load any of the control registers A, B, and C, and then issue an
attention to the other machine. This allows a transfer of more information
than just the attention code, and also allows an ackmowledgment or other

trancfar nf infarmatinon from the other machine.

61

4,1.2 Programmable operations

The previous section described the general outline of the Interface
control protocol. It also described in general terms the process of
putting an Interface Control Block on the Interface Function Queue and the
method for determining the status of the operation represented by the ICB.
Specific descriptions of these two routines are found in Sections 4.2 and 4.3.
This section amplifies the descriptionsﬂfor routines to accomplish
block transfers, attention interrupts, and control seizures. A table
at the end of the section supplies the equivalences between the functions
described here and the actual names of routines on the two machines to

accomplish the functions.

ATTENTION INTERRUPT

An attention interrupt is sent for the purpose of transferring a
small amount of information (about five bits) to the other machine,
immediately. It may be issued at any time, regardless of location of
control or of the current operation being performed. The subroutines for
issuing the attention are simple, taking one parameter, the number to be
sent. Return is made immediately after the attention is sent.

The complementary function, receiving an attention interrupt, is only
slightly more complex. A program which wishes to handle an interrupt
calls a system routine with two parameters: the number of the attention,
and the address of an interrupt time subroutine which is to be called
when the attention is received. The subroutine thus called may perform
only those actions allowed an interrupt routine on its machine. The method
of return from this subroutine is specified in the detailed descriptions

of 4.2 and 4.3. There are also methods for resetting the attention handling

62

for one or all attention interrupt numbers when a program no longer wants
to handle that nﬁmber or numbers.

The system routines maintain a table of all possible attention interrupt
numbers. When the user de¢lares that he will take an interrupt, an entry
is made in the table to that effect. When an attention actually occurs,
control is dispatched through the table. If there is no processor for an
attention number, a message is printed on the printer and the attention

ignored (1800), or the machine halts (PDP-7).

BLOCK TRANSFER
As stated in Section 4.1.1, block transfers are initiated by calling
a system subroutine with one parameter, the address of a seven—word Interface
Control Block. This block contains all the information for specifying the
transfer. No verification is made of the suitability of the user~specified
addresses in the ICB; it is the responsibility of the initiating program
to ensure the appropriateness of the transfer. The system routines will
safeguard the interface conventions by first seizing control of the interface
before starting the transfer. The system routines will also set the first
two words of the ICB and enter the block on the IFQ.
The user must set words 3-7 of the ICB. These words should contain:
3. The address of an op-complete subroutine.
4, The address of the 1800 data area.
5. The address of the PDP-7 data area.
6. The block count (ie., the number of words if 16/16 mode

transfer, or the number of 8/9 blocks if 18/16 mode).

63

7. An endoding of the direction of transfer and the mode of the
transfer.

Words 4-7 simply specify the actual transfer operation. As stated
in Section 4.1.1, the normal method for determining whether a transfer
has been completed is to call a '"test" subroutine with the ICB of the transfer
as a parameter. The user, however, may wish to perform some operation
as soon as the operation is completed, at interrupt time. If this is the
" case, he may specify the address of a subroutine to be called in word three
of the ICB. If he does not wish to do this, he must set this word to zero.
The subroutine thus called is an interrupt routine and may perform only
those operations allowed an interrupt routine on the respective machines.
It may even set up another block transfer, perhaps using the same ICB.

Note that several transfer requests may be outstanding, since a queue
of requests is kept by the system. The only restrictions are that each
request have its own ICB. No ICB or data area should be modified until
the operation associated with it is completed.

(The block transfer subroutine described above is the one which should
be used in most cases since it provides the necessary seizure of control
beforehand and operates within the system conventions explicitly. There
are lower level routines used by the system which are described in the following
sections and which may be of use to the user for special applications.
These routines require Interface control to have been obtained beforehand, do no
queueing, and no checking. A program may use these after it has directly

seized interface control.)

64

SEIZURE OF CONTROL

As explained in Section 4.1.1, some programs may require a greater
degree of control over the Interface than is permitted through simple
block transfers and attention interrupts. A request for such control is
initiated by calling the appropriate routine with one parameter, the address
of a two-word ICB. When the operation isrcompleted (as indicated by the '"test"
routine), the user has control of the Interface to operate as he sees fit
within the following constraints.

1. No operation may be started which will result in an op-complete
interrupt. (Block transfers may be initiated only by calling the
lowest level routines, but the '"enable interrupt" bit must not
be set in the Status Register.)

2. Control of the Interface must not be relinquished directly by the
program (i.e., the machine's resolution bit must not be reset).

3. The user must relinquish his control by calling a system subroutine
to do so.

Operation of the interface is restricted when it is seized in this manner
by a program. Queuéd block transfers will not take place, and the other
machine will be completely locked out. For these reasons, the user should
restrict his use of this function to short periods of time so that the

normal operation of the Interface may take place unhindered.

ADDITIONAL FUNCTIONS

Sections 4.2 and 4.3 contain descriptions 6f subroutines which are
not described here. These routines are for initialization and for access

to the Interface from higher level languages.

65

SOWBN SUTINOIqNS-UOTIdUN 9I2BJFISIUT I°vy 91qel
LILSX ‘avoTI LYLSX ‘avo1l 09NAO01 (penonb jou ‘ojeTpoumNT) JIOFSUBIL NOOTg
INONA 2NONA INDINI ononb oyl uo gDl ue xejug
LLINI LLINI TY9INI 3uripuey ooBJIOJU [[® OZITBTIITU]
(1ox3uoo pue sxojsueal IoJF)
LISLI L1SHL gDLSdL Apesx 03 gDI ue 3s9
OLXAN OLXAN INITHY TOXIJUO0D 9DBJIASJUI ISBI[Y
dZI149S q4Z14dS INIZAS (penenb) t1oxjuod odeIIOIUI 9ZT9S
LV1dl LYLYA OdLITd (ponenb) 3senbsx xoysueal Wooig
--= qd109 INLLV SUOTIU9131Y [I® X0F SUITpuBYy 9yl 39Sy
dT10LV dTOLV NLVAV.L UOTIUS3]Yy SUO IO0F Suripuey 9yl 10S9Yy
SN.LV ASNLV NIWVIV.L 31dnIIs3ul UOTIUS3IY UB SATOISY
LNLLV LNLLY NLVAID 3dnIIsjul UOT3UL3IY UB onssy

NVILd0d 0081 HHTIWASSYV 0081 L-dad

SHWVN INILOO¥dNS

NOILONNA

sosed
Tetoads xoF
9IqeITIEBAE
suIjnox
ToA9T
IoM0q

SOTIJUd
xosq

66

4.2 1800 Interface Support under TSX

Programming support for the Interface is generally divisible into
two areas: attention processing and data transfer. Although these functions
certainly interact in everyday operation, they are handled largely by distinct
sets of subroutines. Moreover, attention.;nd op-complete interrupts appear
to TSX as though they came from separate devjces, so the distinction is functionall
as welllas conceptually convenient.
The subroutines described below are stored in the relocatable program
area of the 1800 disk. ATIN7, @CLR, ENQUE, NEXTQ, and possibly others,
will normally be included in the system skeletén. ATTN7; ATNSU, ATCLR,

DATA7, TEST7, SEIZE, NEXTQ, ENQUE, ILOAD, and XSTRT are reentrant.

67

4.2,1 Attention Interrupts

ATTN7

Purpose:

To generate an attention interrupt, with a given attention

code, at the PDP-7,.

Calling Sequence:

Description:

(assembler) CALL ATTN7
DC ='n'

4
y

(FORTRAN) CALL ATIN7(n)

where n = attention code number (0 < n < 31)

ATTN7 will always wait until the PDP-7 has processed

the previoms attention before issuing the new one. The
latter, however, will not necessarily have been processed
by the PDP-7 when ATTN7 returns. ATTN7 can be called
regardless of which machine has logical control of the
Interface; but if the user wishes to transmit additional
information through the control registers along with the
attention, he must call SEIZE first to acquire the
Interface. Code numbers 0 to 10 are reserved for system

use.

68

ATNSU

Purpose: To establish a subroutine as an ettention-handler.

Calling sequence:

(assembler) CALL ATNSU
CALL SUB
DC ='n

where SUB is the name of the subroutine and n is the attention
code number it handles. |
Description: When an attention interrupt with code n is received,

SUB is called at the interrupt level. The call to
SUB invalidates it for further attention-handling; it
can be restored by calling ATNSU again. If ATNSU is
called from within SUB, the latter must return directly
to TSX by a "B I 90" instruction, rather than

"B I SUB". SUB camet be written in FORTRAN.

ATCLR

69

Purpose? To undo the effect of ATNSU.

Calling sequence:

Description:

(assembler) CALL ATCLR
DC ='n'
(FORTRAN) CALL ~ ATCLR(n)
where n = attention code number.
ATCLR makes attention code n (perhaps temporarily)

invalid. Such attentions will be ignored until a new

handler is established via ATNSU.

70

4,.2.2 Block Transfers

DATA7

Purpose:

To initiate a block-transfer of data to or from the PDP-7.

Calling sequence:

Description:

(assembler) CALL " DATA7
o oIce

i
where ICB is the label oé a 7-word block of core storage
which will become the Interface Control Block for the
transfer.
DATA7 fills in words 1 and 2 of the ICB with system
information and links it into the Interface Function
Queue. Words 3 through 7 of the ICB must be set up
by the user before calling DATA7, as follows:
word 3: address of an op-complete subroutine, to be
executed at the interrupt level when the
transfer is completed. If there is notsuch
subroutine, this word must be zero.
word 4: starting address of the 1800 data area, i.e.,
contents of 1800 Address Register.
word 5: starting address of the PDP-7 data area
i.e., contents of PDP-7 Address Register.
word 6: word count (in 16/16 mode) or block count (in
18/16 mode) for transfer; to be loaded into
Unit Count Register.
word 7: transfer direction and mode, coded as follows:

0 = PDP-7 to 1800, 16/16 mode

1 = PDP-7 to 1800, 18/16 mode

71

2 = 1800 to PDP-7, 16/16 mode

3

]

1800 to PDP-7, 18/16 mode.

If this ICB is first on the queue, DATA7 will
attempt to seize the Interface and initiate it. If
other items are queued.ahead of it, or if the Interface
cannot be seized, DATA7 will return immediately, leaving
the ICB on the queue to be initiated in due course.

In any event, the user must wait for the operation
to be completed and the ICB freed (as determined by
calls to TEST7) before using or altering either the
data area or the ICB.

An ICB may be re-used as soon as it becomes free.
In particular, the op-complete subroutine (if any)
may set up another transfer using the same ICB by

calling DATA7 again,

72

4,2.3 Other Operations

SEIZE

——————

Purpose: To '"Seize'" the Interface; i.e., turn on the 1800's
resolution bit in the Status Register.

Calling sequence:

(assembler) CALL . SEIZE
DC ICB
(FORTRAN) CALL SEEZE (ICB(2))

where ICB is the label of a two-word block of core storage
(assembler) or a tWo-word integer array (FORTRAN),
which will become an Interface Control Block.
Description: SEIZE inserts information in the ICB and queues itt
on the Interface Function Queue. If this operation
is first on the queue and the Interface can be seized,
it will be done immediately; if not, it will be
processed in due course. In any event, SEIZE returns
immediately. The user must call TEST7 to determine
when the operation is complete, i.e., the Interface seized.
Having seized the Interface, the user may do
whatever operations he wishes on it, as long as they
cause no interrupts to the 1800. Nbote that queue
processing is suspended; calls to DATA7 or IDTA7 will
queue operations, but not initiate them. XFER7 can
be called to initiate operations diréctly. When he
has finished, the user must call NEXTQ to resume queue

processing and/or release the Interface.

NEXTQ

73

Purpose: To resume queue processing and/or release the Interface.

Calling sequence:

(assembler CALL NEXTQ
or FORTRAN) ”
Description: NEXTQ initiates the operation specified by the ICB

currently at the top of the Interface Function

Queue. If the IFQ is empty, it releases the
Interface (i.e., turns off the 1800's resolution
bit). NEXTQ is intended to be called by user
programs which have SEIZE'd the Interface and
performed some specialized operation(s) thereon;

it is also called by the system op-complete interrupt

processor.

74

INIT7

Purpose: To initialize the system Interface support sSubroutines
Calling sequence:

(assembler
or FORTRAN) CALL INIT7

Description: INIT7 resets the Interface (via the Blast command),
clears the attenfion-interrupt dispatch table to
its default state, and fesets the Interface Function
Queue to empty. It is normally called when the 1800

is reloaded.

75

ITST7

Purpose: Same as TEST7
Calling Sequence: (FORTRAN INTEGER FUNCTION)
(FORTRAN) IF(ITST7 (ICB(2))) ng,Ny,0y after SEIZE
IF(ITST7(ICB(7))) n,,n,,0y after IDTA7
Description: Same as TEST7, but FGRTRAN-céllable. Value zero

means operation busy; nonzero means operation complete.

76

TEST7

Purpose: To determine whether a queued Interface operation has
been performed.
Calling sequence:
(assembler) CALL “TEST7 .
DC ICB

return 0 - busy
return 1 - not busy

where ICB is the label of the Interface Control Block
for the operation in question.
Description: TEST7 determines whether the ICB whose address is
given as a parameter is still on the Interface
Function Queue. If so, the operation is still pending§
if not, it is complete. If the operation is complete,

TEST7 pseudo-skips on return.

77

IDTA7

Purpose: Same as DATA7, but FORTRAN-callable.
Calling sequence:
(FORTRAN) CALL IDTA7 (ICB(7),AREA (LAST}), IADR7 ,COUNT ,MODE)
where ICB(7) is an element of a 7-word integer array.
AREA(LAST) is the last element of an integer array
to (from) which data is to be written (read); because
FORTRAN arrays are stored backwards in memory, the data
transfer will go A(LAST), A(LAST-1), A(LAST-2),...,A(2),A(1).
IADR7 is an integer variable containing the address of the data
area in the PDP-7.
COUNT is an integer variable containing the unit (word
or block) count.
MODE is an integer variable specifying the transé€er
direction and mode (see 'word 7'" under DATA7).
Description: Same as DATA7.
Note: program containing the above call must be compiled
using the *ONE WORD INTEGERS option.
The op-complete subroutine option is not available

from FORTRAN.

78

@CLR
Purpose: To reset the attention-interrupt dispatch table.
Calling sequence:
(assembler) CALL @CLR
Description: Resets the attention-interrupt dispatch table to

its default state, i.e., with only certain system

codes enabled. Called by INIT7.

ILOAD

Purpose: To load the Interface control registers.

Calling sequence:

(assembler) CALL ILOAD
| C LIST
(FORTRAN) CALL LLOAD(LIST(4))

where LIST is the label of a 4-word block (or name of
of an integer array) containing the data to be loaded.
Description: The word at LIST (or LIST(4)) is written into the
1800 Address Register; at LIST+1 (LIST(3)) into the
PDP-7 Address Register; at LIST+2 {LIST(Z)) into the
Unit Count Register; and at LIST+3 (LIST(1)), into

the Status Register.

79

80

XSTRT

Purpose: To start an Interface block-transfer.
Calling sequence:

(assembler
or RORTRAN) CALL XSTRT -

Description: Issues the Start command, with no éhecking; assumes

the control registers have already been loaded.

ENQUE

81

Purpose: To append an Interface Control Block to the Interface
Function Queue.

Calling sequence:

(assembler) CALL | ENQUE
DC ICB

where ICB is the label of the Interface Control Block
Description: ENQUE adds the ICB to the IFQ. If the IFQ was
initially empty, ENQUE attempts to seize the Interface
and, if successful, initiate the operation. The
user will normally have occasion to call ENQUE only
for nonstandard operations (i.e., not available

through DATA7 or SEIZE).

82

4,3 PDP-7 Implementation under LOCOSS

The device support in the PDP-7 is implemented in LOCOSS (Logic of
Computers Operating System for the Seven) as a set of subroutines permanently
resident in the operating system. Knowledge of the LOCOSS conventions is
assumed in the descriptions below. These subroutines are accessed by indirect
reference through the system communication rggion. The LOCG assembler for
the PDP-7 has appropriate definitions in its permanent symbol table for
referencing the routines. For example, absolute location 135 (octal) has
the address of the bloék transfer subroutine. The assembler's definition
for BLKTRQ is "JMS* 135", as an operator. Thus, the user calls the block
transfer subroutine by putting the symbol BLKTRQ in the operator field of

an instruction.

83

4,3.1 Attention Interrupts

GIVATIN

Purpose: To issue an attention interrupt to the 1800.

Calling sequence: (interrupts on or off)

(AC=attention number) -

GIVAIN

RETURN =~ ==-w--

Description:

GIVATN will not disturb the interrupts-enabled status.
The attention will not be issued untii any previous
attentions have been cleared by the 1800. Upon return
from the GIVATN, the attention will have been issued,
but not necessarily processed by the 1800. Interface control
is not a prerequisite for issuing an attention, but if
any register-transfers are to occur as a result of the
attention, the control should be obtained prior to calling
GIVAIN, through subroutine SEZINT.

Attention numbers 0-10 are reserved for system use;
numbers 11-31 may be used by other programs.

No checks are made.

TAKATN

84

Purpose: To set up handling for attention interrupt reception.

Calling sequence: (interrupts 6ff)

(AC=attention number)
TAKATN

XXX

RETURN ~ —==m-m=mme-

Description:

TAKATN sets up the attention interrupt handling for the
attention number given in the low-order bits of the AC.
This number must be less than 32; numbers 0-10 are reserved
for system use. XXX is an instruction which is executed
(i.e., XCT'ed) at interrupt time when the attention is
received. If the instruction is a subroutine call, the
subroutine thus called must return to its caller. If XXX
is zero, the attention handling for that number reverts
to normal system handling. The handiing set up by calling
this subroutine remains in effect until LOCOSS routine
RESET is called or LOCOSS is restarted.

Normal system attention handling for interrupt numbers
which have no service routines declared is to halt with

the interrupt number in the AC.

85

ATTNI

Purpose: To reset handling for all attentions to the default case.
Calling sequence: ATINI
RETURN --=-=---
Description: Any handling for attention interrupts previously set up
by users' programs is restored to the default.case, which
is to halt with the interrupt number in the AC. After
this subroutine has been called the only attentions recognized
are the special system communications attentions.

This subroutine is called by INTERI.

86

4,3.2 Block Transfers

BLKTRQ

Purpose: To initiate a block transfer between the memories of the

two machines (queued).

Calling sequence: (interrupts off)

BLKTRQ
DC ICB
RETURN e
Description: BLKTRQ must be called with interrupts off so that it

may be called from an interrupt routine. Return is made
with interrupts off, and is always immediate (i.e.,
control will not be passed to the task queue processor).
Upon return, the transfer may or may not be completed so
that subroutine TESTCB should be called to determine fhe
status of the operation. Neither the ICB nor the transfer
area should be changed or used until the operation is finished.

The ICB (nterface Control Block), whose address
is the parameter to the call, is a seven-word block of
core specifying all the information to control the transfer.
The last five words are specified by the user, and the
first two are used by the system subroutines. The contents
of the block are:

1. For system use.

2. For system use.

3, The address of a subroutine to be called when the
operation is completed (may be zero).

4, The IBM 1800 address.

87

5. The PDP-7 addrsss.

6. The block count (Number of words if the transfer
is in 16/16 mode, and the number of 8/9 blocks
if the transfer is in 18/16 mode).

7. Direction and transfer mode, coded as follows:

Direction: Bit 8=0, from PDP-7 to 1800
=1, from 1800 to PDP-7

Mode: Bit 9=0, 16/16 mode
=1, 18/16 mode

Thus, the following are the possible (octal)
values this word may take:
000000=PDP-7 to 1800, 16/16 mode
001000=1800 to PDP-7, 16/16 mode
000400=PDP-7 to 1800, 18/16 mode
001400=1800 to PDP-7, 18/16 mode
The op-complete instruction will be executed when the transfer
has been completed. If it is a subroutine call, that
subroutine may perform only those actions permitted an
interrupt subroutine, and must return to the caller.
It may call BLKTRN itself to restart a block transfer
operation.
Several transfer requests may be issued, as long as

each has its own unique ICB. Requests are filled in the

order received.

TESTCB

88

Purpose: To determine whether an operation has been completed.

Calling sequence: TESTCB
DC ICB
RETURNL © ~==mee--
RETURN2 ~ =~====---
Description: Interrupts-enabled status is not affected by this sub-

routine. ICB is the address of an Interface Control

Block, either transfer or seize, After the respective
operation has been requested, the program determines the
status of the operation by calling TESTCB with the control
block as a parameter. If the operation is not yet finished,
control is returned to RETURN1, which is the address of

the call plus two. If the operation has been completed
(i.e., the transfer is finished or control has been seized),
control is returned to RETURN2, which is the address of

the call plus four. (Thus, when the operation has finished,
TESTCB pefforms a two word '"pseudo-skip".) The user

should not change the control block until TESTCB yields

a success return.

SEZINT

89

Purpose: To obtain logical control of the Interface from the task-time

level.

- Calling sequence: SEZINT

RETURN

Description:

DC ICB
SEZINT may be called with interrupts on; it returns with
interrupts on. ICB is a two-word Interface Control Block
for use by the system. Upon return, the Interface may
not yet be under control, The user determines when
this occurs by calling TESTCB with ICB as a parameter.

When TESTCB indicates that the operation is finished
(i.e., control has been obtained), the user may operate
the Interface and its registers directly. The user may
not perform any operation on the Interface which will lead
to an interrupt occurring except by going through the
system routines. No block transfers can take place through
BLKTRQ while control is in the hands of the user via this
subroutine (LODNGQ must be used instead). After the
user no longer needs direct control of the Interface he
must relinquish control by calling subroutine RELINT.

More than one seize request may be outstanding (e.g.,
from different tasks), but each requeét must have its own

ICB.

90

RELINT

Purpose: To relinquish logical control of the Interface from the
task-time level.
Calling sequence: RELINT

RETURN ~ -=--=-

Description: RELINT may be called with interrupts on or off; it
returns with interrupté on. If the interface is under
logical control of the program, the control is
relinquished to the system. If the system already

has control, nothing happens.

INTQUE

91

Purpose: To enter a control block onto the Interface Function Queue.

Calling sequence: (interrupts off)

RETURN

Description:

(AC=address of an ICB)

INTQUE
On return, interrupts will still be off. The second word
of the Interface Control Block should be an instruction
to be executed when the control block is ready for operation.
If the operation started by the control block word two
results in an op-complete interrupt, the third word in the
control block should be an instruction to be executed
at op-complete time. If the operation does not produce
an op-complete interrupt, the IFQ processor must be restarted
by calling subroutine RELINT.

Upon return from INTQUE, the function may or may
not be finished. Subroutine TESTCB must be called,
with the control block as parameter, to determine the status

of the operation.

92

INTERI

Purpose: To initialize Interface handling.
Calling sequence: (interrupts off)
INTERI
RETURN -===--

Description: INTERI sets up the LOCOSS handling for Interface ihterrupts,
sets all attention interfupt number handlers to the default
case (by calling ATTNI), and &lears the IFQ of all requests.
INTERI is called by LOCOSS routine RESET and at LOCOSS
initialization time, so that it is usually not called

by user programs.

LODNGO

93

Purpose: To start a block transfer by loading the Interface registers

and issuing the Interface Start command.

Calling sequence: (interrupts off)

RETURN

Description:

(AC=address of a four-word block)

LODNGO

This routine operates and returns with interrupts-

off because it is called at interrupt time by the IFQ
processor. The four-word block addressed by the AC
contains data to be loaded into the Interface registers

in the order: 1800 Address, PDP-7 Address, Count, and
Status. After the registers have been loaded, the Interface
Start command is issued. The Status Register is loaded

as given, so that it is the caller's responsibility to
ensure the correct setting of the enable bits for the

proper op-complete termination.

94

5. EVALUATION AND CONCLUSION

Our experience on the Interface has been limited primarily to
development of diagnostic routines and normal device support routines.
The hardware is just now being opened to general usage. The experience
of "novice'" users wiil doubtless affect our evaluation of our wisdom
in developing this design - hopefully positively. Our personal
experience has been very good, with the exception of some items discussed

later in this section.

5.1 Design Variations

There are many ways in which the current design could be varied to

suit specific requirements. We shall briefly sketch a few of these.

5.1.1 General Frame Size

In more general applications the effective word size for either
or both computers could be made more variable. Consider two additional
Frame Size Registers - one controlling the "word size" of each computer.
A Frame Size Register would be used in two ways. First, its value would
be used to reload the corresponding Shift Counter : . each time'the
latter reaches zero. This provides the necessary bit-counting. Second,
its value would be decoded and used to select the point at which the data
is inserted into the Data Register. This achieves the right-justification
of the data at the destination computer. Figure 5.1 illustrates a
possible method of constructing such a 'variable length" Data Register

for two hypothetical computers.

95

(umoys 30N buTizen TaTTeRIRg pPUE butwTty)

I93sThboy e3eaq ,yzbueT sTqeTIEA, BUTASTYDOY JO POU3ISW T°G =2anbtg

S

V. 23oerss

z swex g
T

—~—
¥ Xo3ndwo) woI pue 03 sIoFsuedy, [STTeIed

I93s1Ib
ej3ed

. ~

g I93ndwo) woxy pue 03 sIASISurI] [oTTeIed

Of course, not all frame combinations need be provided. And the

insertion point could be located to give other than right-justification.

5.1.2 Alternate Data Transfer Method

Observe that the variable-length circular Data Register is necessary
to achieve the inverse of a given data transfer provided the conventional
technique of starting a transfer at the beginning or lowest-numbered
address of a block is used. An alternate organization could use a
linear Data Register capable of shifting in both directions and Address
Registers that can count both up and down. The inverse of a given data
transfer then becomes a true (almost) time-reversed copy of the original
transfer: the addresses start at the high end of a block and count down,
and the shift direction is opposite the original. Of course, the Count
Register still counts down.
5.1.3 Constraints on Control Functions

In some applicatéons it may not be desirable to permit one machine
to start a data transfer without the other machine verifying the action.
It would be a simple matter to require a Start command from both machines
to initiate transfers. Many other interlocks are possible.
5.1.4 Use with Nondirect - Memory-~Access Machines

The architecture of this interface is oriented toward machines

that provide the ability for an external device to access memory directly

96

at an address of the device's choice. But for the IBM System 360 machines,

for example, and for machines using virtual address schemes, such direct

access is not possible.

The 360 channel does not permit external devices to provide a physical

97

storage address ot to initiate a data transfer operation without cooper-
ation from the CPU in the form of a channel program. In addition, the
logic of virtual addressing does not permit user programs access to physical
page information.

In applications where another machine is-to be connected to a machine
like a 360, the conceptual function of the interface cdn be maintained
by means of a programming convention which would have the other machine
load the interface registers with logical addresses and present an attention

interrupt to the 360, whereupon the latter could construct an appropriate

channel program and initiate the operation.

5.2 "If we had it to do over..."

— — —— —— —— —

This section discusses ways in which the interface could have been
improved and/or made simpler based on hindsight.
5.2.1 Uniformity of Structure

The original goal of making the interface completely programmable
should have been followed more closely; hardware debugging would have been
easier if all bits of the status register could have been set or cleared
by program. An additional "diagnostic' register, consisting of all control
flip-flops not represented in the status register, would have aided hard-
ware debugging also. The attention codes should be half-duplex paths like
the other registers. Errors should not be reported as attentions, but
rather as ending status available with the operation-complete interrupt.
5.2.2 Simultaneity of Control

Our experience suggests that some simplification could be achieved

98

if the requirements for simultaneous access to the interface by the two
computers were relaxed. It is probably adequate to expect the interface

to be seized before any control function is performed (except seize and
perhaps attention). This would ease the timing constraints on some functions

and should permit more sharing of interface logic between the respective

computers.

5.3 Summary

An interface has been provided between an IBM 1800 and a DEC PDP-7
that permits flexible and interactive programming. It provides block
transfers of data at high speeds in either of two modes: on a word-for-word
basis, or using a pack-unpack arrangement to compensate for the difference
in memory word lengths. Control registers are accessible to both computers,
allowing the interface to be initialized byveither computer acting alone
or by both cooperatively. A conflict resolution circuit permits either
computer to seize logical control of the interface asynchronously and

unambiguously.

99

BIBLIOGRAPHY

Brender, Ronald F. "A Programming System for the Simulation of Cellular
Spaces," Ph.D. Dissertation, The University of Michigan, 1969.

Brender, Ronald F. and Foy, J.L., Jr. "Flexible High-Speed Interface
Between IBM 1800 and DEC PDP-7 Computers,'" Technical Report 12,
Concomp Project, The University of Michigan, Ann Arbor, October, 1968.

Digital Equipment Corp. Interface and Installation Manual, DEC Publication
F-78A.
PDP-7 Users Handbook, DEC Publication F-75.

’

——

Frantz, D.R.; Brender, R.F.; and Foy, J.L.,Jr. '"LOCOSS: A Multiprogramming
Monitor for the PDP-7," Technical Report 10, Concomp Project, The
University of Michigan, Ann ARbor, November 1968.

International Business Machines Corp. IBM 1800 Functional Characteristics,
IBM Publication A26-5918.

Y

T Information, IBM publication A26-3591.

TBM 1801 and 1802 Processor-Controllers Original Equipment Manufacturers'’

100

APPENDIX A: INTERFACE CONTROL PANEL

The Interface Control Panel consists of indicators, toggle switches,
rotary switches, and momentary-contact switches. Each of these is labeled

with a letter in the schematic diagram (Figure A.1) and described below.

Indicator Displays (a - i, p)
a. 34-bit Shift Register
b. 16-bit 1800 Address Register
c. 16-bit PDP-7 Address Register
d. 16-bit Unit Count Register
e. 5-bit B Shift Counter
f. 5-bit A Shift Counter
g. 16-bit Buffer Registers, selected by switch j.
jl: 1800-Interface Data Buffer
j2: PDP7-Interface Data Buffer
j3: Interface-PDP7 Data Buffer
j4: Interface-1800 Data Buffer
j5: 1800 Command Buffer
h. 8-bit Control Flip-flops, selected by switch k.

kl: PDP-7 Instruction (PDP7-1) FF.

not used
PDP7 T&S PENDING FF
PDP7 Period Counter 0-4

00 W N =

~
1

et
N

1800 Instruction (1800-I) FF
not used

1800 T§S PENDING FF

1800 Period Counter 0-2

]
o U K =
e o o

(=)}
]

PDP7 ILLEGAL WRITE FF
1800 ILLEGAL WRITE FF
PARITY ERROR FF

STOR PROT VIOLATION FF
PDP7 BRK REQ FF

1800 CS REQ FF

HALT PENDING FF

GO FF

o
w

CONONUT & N =

101

i. 11-bit Status Register, 5-bit 1800 Attention Code Register
i'. 5-bit PDP-7 Attention Code Register 7

p. Power-on pilot lamp

Rotary Switches (j-k)
j. S-position Buffer Register display selector

k. 3-position Control Flip-flops display selector

Toggle Switches (1-0)

1. Enable/Disable PDP-7

m. Enable/Disable 1800

n. Clock switch - Run/Single-step

0,. Power switch - On/Off

Momentary-Contact Switches (gq-T)
q. Clock pulser - Start/Step

r. Interface reset

Notes:

Switches 1 and m, in the Disable position,. prevent the corresponding
computer from accessing the Interface and prevent the Interface from interrupting
the computer. Block-transfers (if initiated by the other computer) are not
inhibited.

With switch n in the Single-step position, each depression of the
clock pulser, switch q, causes the Interface basic clock to advance one

step (i.e., causes one transition of the PHASE flip-flop).

102

Settings for normal operationsare:

1,m - Enable
n - Run
o - 0On

Power-on procedure:
1. Turn POWER (switch o) on.
2. Press RESET (switch r)
3. Press START (switch q)

The PDP-7 and 1800 should both be stopped while Interface power is

being turned on.

103

| 000000 6000000000000 000000000000000 |
(a) DATA

(b) A () C
0000000000 000000 (XY X 00060
(c) B (e) B A (f)

SHIFT COUNTERS

| ENABLE
‘ N w8
00000000000 00000 - - (1) (m)
(9) BUFFERS () DISABLE
, ® (q)
\ Iz SS START
00000000 “‘ 9;(0) 8(n) © (r)
(h) (k) POWER RUN RESET

O (p)

® ©¢ ¢ ©6 6 6 © ¢ 6 @ © @ @ & o o 13800
(1) ATTN
(i') ® ©¢ € ® @ PDP-7

Figure A.1 Interface Control Panel

104

Appendix B: Command Summaries

1. 1800 Commands

The 1800 issues commands to the Interface by exe-
cuting the Execute I/O (XIO) ingtruction, which refers
to a two-word I/O Control Command (IOCC). The left-
hand word of the IOCC contains the address of a memory
location to be used in a Read or Write function; on

all other operations concerning the Interface, the left-

hand word is ignored. The right-hand word is broken

into three sections, as follows:

Area (bits 0-4) - contains a unique code for each
device on the system; Interface
code is 10100.

Function (bits 5-7) - specifies type of operation;
functions relevant to the Inter-
face are Read, Sense, Write, Con-
trol, Sense Interrupt Level.

Modifier (bits 8-15)- further specifies certain functions,
€.9., which register is desired
during a Sense.

IOCC Format for Interface Commands
€—vord 0 —>€ Word 1 >
Data Address |1 01 0O0/FFFAB C D W X Y 42

0 1501234567 891011 12 13 14 15

105

FFF - function code

001 = WRITE

010 = READ

011 = SENSE INTERRUPT LEVEL
100 = CONTROL

111 = SENSE

ABCD - register-select for READ, WRITE, SENSE

1000 - 1800 Address Register

0100 = PDP-7 Address Register
0010 = Unit Count Register
0001 - Status REgister

Note - more than one register may be selected at the
same time. This is reasonable only for WRITE; for
READ or SENSE, the selected registers would be OR'ed

together.

WXYZ - function sub-select

a) WRITE (FFF = 001)

1000 = Clear Attention Code (to PDP-7)
0100 = Bit Reset (Status Register only)
0010 = Bit Set (selected register(s))
0001 = Clear (selected register(s))

Any or all of the above bits may be on simultaneously.

b) SENSE (FFF = 111)

0100 Perform Test & Set

0010

Set "Pending" flip-flop

(Regular Test & Set is 0100; Test & Set (Pending) is 0110.)

c) CONTROL (FFF = 100)

0100 = Start block-transfers
0010 = Halt block=-transfer
0001 = Blast - Interface reset

Note: the function WRITE'}FFF = 001) is not the
same as the command "Write". Several different commands
have a function of WRITE (FFF = 001) but different modi-
fiers (ABCDWXYZ): among these are Clear Attention Code,
Reset Status, Set Status, Write (register), and Clear
(register). The command Write has WXYZ = 0011, i.e.,

both Clear and Set are selected.

2. PDP-7 Commands

The PDP-7 issues commands to the Interface by exe-
cuting IOT instrdctions. An IOT instruction is broken
into five fields as follows:

Operation code (bits 0-3)

- 1110 for IOT
Device selection (bits 6-11)

- contains a unique code for each device on the
system; Interface code is 5X (octal), where X
is any octal digit. (X is used for further
specification of Interface commands.)

Sub-device selection (bits 4-5, 12-13)
- available for further specification of device

functions

106

107

Clear accumulator (bit 14)

- if set, causes the accumulator to be cleared

(preparatory to receipt of data from the device)
IOP selection (bits 15-17)

- each bit, if set, causes a.pdlse to be emitted
on a corresponding control line to the device;
these bits are used by the Interface, but the
corresponding pulses are ignored.

IOT Format for Interface Commands

1 1 1|0 w 9|1 0 1|R A B{C D S|{X Y 1

)

0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17

Q - command class

1 control

0

read/write
R - command subclass

1 write

0 = read
S - clear accumulator

1 clear accumulator; normally set with Read

0 do not clear accumulator

ABCD - register selection for Read, Write

1000 = 1800 Address Register
0100 = PDP-7 Address Register
0010 = Unit Count Register
0001 = Status Register

108

Note - more than one register may be selected at the
same time. This is reasonable only for Write; for

Read, the selected registers would be ORkd together.

ABCD - function sub-selection gor Control

1000 = Skip on Op-Complete

0100 = Skip on Attention

0010 = Set "pending" flip-flop
0001 = Perform Test & Set

(Regular Test & Set is 0001; Test & Set (Pending)

is 0011.)

W - function sub-selection for Write
1l = clear attention code to 1800

0 do not clear attention code

Il

XYZ - function sub-selection

a) Write (QR = 01)

100 = Bit Reset (Status Register only)
010 = Bit set (selected register(s))
001 - Clear (selected register (s))

(Any of WXYZ may be on at once.)

b) Control (QR = 10)

100 Start block-transfer

010 Blast-Interface reset

001 Halt block-transfer

109

1800 Command List (right-hand words of IOCC's)

For brevity, the following abbreviations will be

used:
A - 1800 Address Register
B - PDP-7 Address Register
C - Unit Count Register
D - Status Register
Command IOCC (hex)
Read A A280
Read B v » A240
Read C A220
Read D A210
Sense A A780
Sense B A740
Sense C A720
Sense D A710
Write A Al83 (= Clear & Set)
Write B Al43 " "
Write C Al23 " "
Write D All3) "
Clear A Al81
Clear B Al4l
Clear C Al21
Clear D Alll
Set D All2

Reset D All4

Write Attention Code
Clear Attention Code
Test & Set

Test & Set (Pending)
Blast

Start

Halt

Sense Interrupt Level

AllA
All8
A712
A716
A401
A404
A402

0300

110

(= Clear Attention Code
+ Set D)

PDP-7 Command List (IOT's)

111

For brevity, the following abbreviations will be

used:

b
|

o
1

@]
|

(W)
I

Command

Read A

Read B

Read C

Read D

Write A

Write B

Write C

Write D

Clear A

Clear B

Clear C

Clear D

Set D

Reset D

Write Attention Code
Clear Attention Code
Test & Set

Test & Set (Pending)
Blast

Start

Halt

Status Register

1800 Address Register
PDP-7 Address Register

Unit Count Register

IOT (octal)

705210
705110
705050
705030
705603
705503
705443
705423

705601
705501

705441
705421
705422
705424
725422
725420
715020
715060
715002
715004

715001

maraTnn

(= Clear & Set)

(= Clear Attention
Code + Set D)

112

APPENDIX C: DIAGNOSTIC TEST PROGRAMS

C.1 1800 Test Programs

C. 1.1l Introduction

The 1800 Interface Test Program consists of three
major sections in addition to initialization and error-
reporting. These sections cof;espond to their counter-
parts on the PDP-7: |

A. Control functions_teéts

B. Cooperative tests

C. Block-transfer tests

The program is named ITEST, and normally resides
in the relocatable program area of the 1800 disk. The
usual TSX control cards required for execution of the
program are as follows:

// JOB

// XEQ ITEST

*CCEND

The desired tests are selected by means of the
SENSE/PROGRAM and DATA ENTRY switches on the 1800 con-
sole. When the program is loaded it types "READY", then
pauses to allow the operator time to set the switches.
Execution resumes when the operator presses the console
START button.

It is assumed that the operator has an assembly
listingvof ITEST at hand while running these tests.
Switch options are specified by comments on the first

pages of the listing, and interpretation of error messages

113

requires reference to the program text in the body of the listing,

C.1.2 Error Reporting

Error messages in sections A and B have the format

XXXX YYYY Z7Z7
where XXXX 1is the address from which the efror subroutine

was called (relatiﬁe to the program origin).

YYYY 1is the contents of the accumulator when the
error subroutine was called; this is usually
the value in error.

27227 is the value of the "current comparand";
this is usually the value that should have
been in the accumulator.

Since the error routine returns normally to the
point from which it was called after printing the error
message (and possibly pausing, depending on switch set-
tings), the test that was in progress will be continued.
In certain cases this will lead to further error messages
which are actually spurious, resulting from the initial
error. Standard procedure when this happens is to set
the switches to suppress error-printing until things
re-synchronize, possibly stopping and re-selecting the
test.

The section C tests are all of one type, in which
a data table is generated, written into the PDP-7, read

back into another table, and compared with the original

table.

Therefore this section has really only one error

message, and its format is

where

AAAA

AAAA

BBBB

cccce

DDDD

EEEE

FF

BBBB CCCC DDDD EEEE FF

is what should have been received;

is what was received;

is the offset, from the beginning of the
data table, of the erroneous word;

is the exclusive-or of AAAA and BBBB (to
aid in recognition of failing bits);

is the total number of erroneous words in
the table;

is "16" or "18", depending on whether the
mode of transmission was 16/16 or 18/16,

respectively.

Note that if more than a single error occurs, only the

first is logged out in detail; the others are simply

counted.

C.1.3 Section A Tests - Registers and Control Functions

l.

(Sense switch 0)

Blast Test (Data Switch 4)

An all-one's constant (FFFF16) is written into all

four registers. The Status Register is then read and

compared with a mask to see that only those bits which

are supposed to be program-settable were in fact set.

114

115

A Blast command is issued, and all four registers read
to be sure they were set to zero by the Blast.
2. Attention-Interrupt Test (Data Switch 5)

This test sets the Attention 1800 bit (bit 1 of
the Status Register), then verifies that an interrupt
is received on level one (an interrupt on any other level
will be trapped; see Section C.1.6). A Sense Interrupt Level
command verifies that the proper bit (400016) of the
Interrupt Level Status Word is generated. The
Status Register is tested to be sure the proper bit is
still on; then it is reset, and the reset verified.
Then the 1800's interrupt priority circuits are reset;
a spurious interrupt from the Interfacé would cause a
trap at this point. |
3. "Test & Set" Test (Data Switch 6)

This test checks the immediate form of the Test &
Set command. (Note: a complete test of this command
requires cooperation from the PDP-7; see Section C.3.)
Test & Set command is issued and verified, then is issued
redundantly and verified again. The 1800 resolution bit
is reset via the Reset Status command, and verified.
4. "Test & Set (Pending)" Test (Data Switch 7)

This test checks the pending form of the Test & Set
command. (As above, a complete test requires coopera-
tion from the PDP-7; see Section C.3). A Test & Set (Pending)

command is issued and reception of the resulting

116

interrupt is verified. A Sense Interrupt Level command
verifies that the proper bit (200016) of the Interrupt
Level Status Word is generated. The Status Regis-
ter is tested to be sure the Op-Complete (bit 0), Enable
1800 (bit 3), and 1800 Resolution (bit 5) bits afe all
on. A redundant Test & Set (Pending) is issued, and a
check made to see that the above three bits are still
on. Next the test resets the Enable 1800 bit, verifies
this, and resets the 1800's interrupt priority circuits;
absence of a spurious-interrupt trap (see Section C.1l.6) at this
point verifies the Enable function. Finally the Op-Com-
plete and 1800 Resolution bits are reset and verified.
5. Registers Tests (Data Switch 11)

Each register is written with a test bit pattern,
then read back and verified. The test patterns are
different for each register, and are kept in variables
named CPU@A, CPU@B, CPUQC, and CPU@D. On each cycle
the register is read to be sure the previous pattern
is still present; then the pattern is incremented by
a quantity constant but different for each registef.

The new pattern is written into the register, then read
back using both Read and Sense commands. Any discrep-
ancies are reported. The above procedure is carried
out on each of the other registers in turn, then the

whole process is repeated.

117

The Status-Register test masks the test pattern to
include only the controllable bits of that register;
additionally, it tests the bit-set and bit-reset func-
tions.

Any register(s) may be omitted from the test loop

by switch selection.

C.1.4 Section B - Cooperative Tests (Sense switch 1)
This section consists of three tests which check

the Attention Code and Resolution circuits more thor-

oughly than is possible from either machine separately.

The tests may be run one at a time under manual selection

(Data switches 4, 5, and 6 for the Attention Code, Test

& Set, and Test & Set (Pending) tests, respectively),

or they may be run under direction of the PDP-7 test

program in auto-sequence mode (Data switch 15). See

Section C.3 for further details.

C.1.5 Section C - Block Transfer Tests (Sense switch 2)
Tests in this settion are all of the same basic
type: a table of data is generated, written into PDP-7
memory, read back into a different region of 1800 memory,
and compared with the original table. The write-read-
compare cycle is performed a fixed number of times, then
the table is regenerated and the whole process repeated.
The operator, by switch setting, selects the type of
data table to be generated, and also certain options.

The table types and options are as follows.

118

1. Fixed tables

The table size and starting addresses in each
machine are fixed (assembly parameters of'ITEST),
and the table is filled with the constant AAAA,
(Data switches 5 and 6 off), Ff‘FFl6 (Data switch 5
on, 6 off), or 0 (Data switch 5 off, 6 on). The
‘alternate ones and zeros ‘(AAAAlé) are considered to
to be a worst-case test of the Interface Data Regis-
ter's serial reliability, while the all-ones (FFFFlG)
and all-zeros (0) are a test for bits picked up or
dropped during parallel tranfers. Each table is
2048lO words in length.
2. Random Tables

Within constraints established by assembly para-
meters, the table sizes and starting addresses in both
machines are varied randomly. The initial data table
is also generated randomly (the distribution is uni-
form over 0 to 216-1), and is regenerated from a new
random sequence after every l6th write-read-compare
cycle. The table size and starting addresses are
varied every_time the table is regenerated. This
random test (Data switch 7 on) is considered the most
stringent overall test of the Interface block-transfer
functions.
3. Options

Data switch 4 controls the mode: if off, the above

119

tests are performed in the 16/16 mode; if on, in the
18/16 mode.

Data switch 8 selects testing of the Halt command;
if on, each block transfer is interrupted by a Halt
issued at a randomly-chossn point fn the transfer. The
Interface registers are logged out, a Blast is issued,
the registers are reloaded, and a Start is given. If
everything works, this interruption is transparent to
the "higher level" portions of the test program; if
not, block transfer "data errors" will appear.

The "hardware fault" circuits test is selected by
Data switch 9. Hardware faults are parity and storage-
protect errors; attempted modification of the Address or
Count Registers during a block transfer is also included
in this category. This test attempts to alter illegally
the Address and Count Registers, verifies that the "hard-
ware fault" attentions are generated, then clears them.
The data transfer should remain unaffected; if not,
errors will appear during the data table comparisons.

In addition, a location in the receiving data table is
store-protected; detection of this condition by the
Interface is verified, after which the store-protection
is removed and the aborted transfer restarted from the
beginning. Parity errors cannot be forced by program

control, and hence cannot be checked by ITEST.

120

N.B.: This option should not be selected jointly
with the random test, since it makes assumptions about
the length of the data tables which are valid only
during the fixed-tables tests. This test should also
not be jointly selected with the Halt test.

In selecting options for the block transfer tests,
the operator: should be aware thét the test program ex-
amines the switches only at table-regeneration time--
once every 16 write-read-compare cycles. Thus the
effect of a new switch setting may be delayed nearly
two seconds.

C.1.6 Initialization - All Sections

The system mask register is set to FFFF, . to
force the TSX I/0 subroutines to run on indicators
instead of interupts. The timer(C) is stopped to
prevent timer interrupts from occurring. The inter-
rupt vector in low core (locations OOOAl6 through

0015 is saved and replaced with pointers to a set

16’
of spurious-interrupt handlers; thus any unexpected
interrupts will cause error message(s). After typing
"READY", the program waits for the last typewriter
interrupt to occur and clears it; if this were not
done, a "spurious interrupt" would appear on level

Zero.

Upon exit (Data switch 0 on), the program restores

121

the system mask register and interrupt vector. The
clock, although probably in error, is restarted. Re-

turn to TSX is via CALL EXIT.

Summary of Switch Settings for 1800 Interface Test Program

A. Control Functions Tests Sense switch 0
Blast test Data switch 4
Attention-interrupt test " " 5
Test & Set test " " 6
Test & Set (Pending) test " " 7
Registers test " " 11

Omit 1800 Address Register " " 12
Omit PDP7 Address Register " " 13
Omit Unit Count " " " 14
Omit Status " ‘" " 15

B. Cooperative Tests Sense switch 1
Attention-code test Data switch 4
Test & Set test " " 5
Test & Set (Pending) test " " 6
Auto-sequence mode " " 15

C. Block-Transfer tests Sense switch 2
18/16 mode Data switch 4
All 1's data table " " 5
All 0's data table | " " 6

Random table " " 7

Include "Halt" test

Include "hardware-fault" test

Stop after "Halt"

For all tests:

Exit test program

Stop on error

Suppress error messages

Type "X" (off), nothing (on)
(Switch 3 is effective only if
2 is on)

Force end of current timeout

Data switch

Program switch

10

122

123

C.2 PDP-7 Test Program

The PDP-7/Interface Diagnostic program is divided into five sections:

1) Symbol definitions, service routines, and initial
command sequences,

2) General registers tests (Section A),

3) Cooperative (Section B) tests,

4) Data-Break (Section C) tests,

5) Error reporting and miscellaneous routines.

In general, the register tests involve those functions that can be
tested from the PDP-7 independently of the 1800. The cooperative tests
involve those functions which require the active cooperation of both
1800 and PDP-7 to test. The block data tests involve the cycle-steal
and halt tests.

Sections A, B, and C are completely independent of each other so
that a special purpose test may be made be assembling the first and last
parts together with the desired test section.

This diagnostic uses the routines PROCT, PRDEC, and ASCOUT of LOCOSS
for 1/0 conversion. Special device routines have been substituted for
KBDA and TPRA which run with interrupts off and use only the device
flags. A completely self-contained diagnostic could be provided by including
copies of the PRDEC, PROCT, and ASCOUT routines with the service routines
of the first section in a manner similar to that used for KBDA and TPRA.

Errors are reported as three octal numbers, as follows: the first

is the address of the point where the error was detected. This address

124

may be used to look into the program listing to identify the particular
error and the context in which it occurred. The second number is the
contents of the accumulator at the time of the error call. This is almost
always the value that is in error. The third number (usually) is the
expected value that should have been in the accumulator. From

- examination of the program listing the actual error will hopefully be
determined.

After the test program is loaded and started, it asks the operator
which of the three groups, called A, B, and C respectively, is to be
used. Then the operator may obtain a summary of the switch assignments
for selecting the individual tests to be used.

To facilitate locating the appropriate section of program from the
address of an error report, each call to the error-reporting routine
has been given a program label. The first two letters of the label are
"ER", The next letter is "A", "B'", or '"C'" to identify the group of tests.
The next letter is a numeral giving the number of the test within each
group. Next follows a period ".". The sixth letter is a numeral giving
the position of the error call within the test. For example, if the
typed-out location of an error éorresponded to label "ERA1l.1l'", then one
would know that the error was the first error check in the first test
in the register group of tests. This label may quickly be found in
the listings to find the probable cause of the error.

The following subsections will discuss the various diagnostics
tests in detail. This summary of intended function may be useful in

understanding the program listings and interpreting the significance

125

of error type-outs. Where program labels are used in the text they

are enclosed in parentheses, e.g., (ERAL.1l).

C.2.1 Section A - General Register Exercises

Section A consists of five tests. These are selected by switches

3

6 through 9 and 13.

Switch 6 - Blast Test - (A1). All ones are written into all four

registers of the Interface. Not all bits of the STATUS register are
writable. The first test reads the STATUS and checks that all and only
settable bits are ones. Next a BLAST command is given to clear all bits
of the interface. Each register is read and compared in turn with zero
to verify.

Switch 13 - Registers Test = (A2). All four registers are

written with a sequence of bit patterns to test the ability to write and
re-read the contents of any register independent of any other register.
The four memory locations (OLDXA), (OLDXB), (OLDXC), and (OLDXD) contain
the expected contents of the respective registers. Working with each
register in turn, the register is read and compared to verify that the
old value is still present. Next a new value is written and immediately
read back to verify that it was properly written.

The bit pattern to be used is systematically varied across the
four registers. The base pattern is used with register A. This is then
complemented and used with B. Adding one gives the twos complement
to be used with C. This is further complemented, and masked to settable
bits only, for ﬁse with D. Next the base pattern is incremented and

the cycle repeated.

126

Any or all of the registers may be excluded from this test using
switches 14 through 17 (corresponding to A through D). Switch 14 up,
for example, leaves the A register untouched by this test. Using a
similar selection capability on the 1800, it is possible for one machine
to exercise some of the registers and the other machine to exercise
the remaining ones. As long as the same register is not simultaneously
selected by both machines, the tests should proceed without interfering
with each other.

Note: Testing register D with this test will cause interrupts
at the 1800,

Switch 7 - Attention Flag Tests - (A3). The PDP-7 sets its own

attention flag in the status register and skips on it. A check is also

made that the '"skip on operation complete" does not also occur. Next

the flag is cleared and failure to skip with it cleared is verified.
Interrupts are set up and the attention flag turned on again.

This should cause a trap through location one, after which the skip is

checked once more. After clearing the flag, interrupts are turned

on yet once more to verify that no further traps occur.

Switch 8 - Test § Set Function - (A4). The Test § Set function is

executed. Since the 1800 has not seized the interface, the instruction
should skip. Status is read to verify the appropriate seize bit is set.
A second seize instruction while the bit is set should not skip. The
bit is then cleared and this verified.

Switch 9 - Test & Set Pending Form with Interrupt - (A5). Interrupt

handling is established, then the pending Test § Set issued. This should

cause an immediate interrupt. This form also sets the operation-complete

127

and enable interrupt to PDP-7 bits in the Status register. This
is checked. The operation complete skip is verified. Then the
interrupt enable is cleared and the skip and lack of interrupt verified.
The rest of the status is cleared one bit at a time and the expected
states verified at each step. ”
C.2.2 Section C - Block Transfer Tests

Section C consists of tests of the data-break or block transfer
capabilities of the Interface. These require only that the 1800 be
cycling (or in WAIT state). Test Cl may be run simultaneously and inde-
pendently with data-break tests running on the 1800 side. This provides
a thorough exercise of nearly all interface functions under heavy load

conditions.

Switch 6 - Basic Block Test - (C1). This test uses only the 16/16

mode transfer of a small block of core. It is also called as a subroutine
by other tests. For reasons too muddy to explain, it is entered at
label TSTC.9 when called directly and at label TSTC.1 when called as
a subroutine.

A block A7 of SIZE words is written into 1800 core at location
A18A. This same block is then read back into a second PDP-7 area (A7A)
and compared against the original data for errors. Next a known pattern
of words with exactly one one in each word is written into the same 1800
area as before. This alternation of data patterns insures that a failure
to transfer will not appear to succeed because of data left from the
previous try.

Each of the parameters SIZE (initially 20g) and Al8A (initially

128

377608) may be modified. All uses of these parameters use dynamically
computed values so that they may even be changed at run time. The
restrictions are these: SIZE may not exceed 20g and must be at least

2, Test C2 will require that SIZE be at least 7. Al8A must not be such
that the block written into 1800 core will store into the area where

the 1800 is executing. 1In addition, contents of the test pattern in

A7 may be changed. The initial values alternate between mostly ones and
mostly zeros in successive words. Other sequences may be desirable.
Changes to SIZE or A7A are conveniently performed by DDT or LOCOSS.

Locations must be determined from the symbol table.

Switch 7 - Edge Tests - (C2). This verifies that the block transfer
is starting and stopping at the desired locations.

First the word after the end of the second PDP-7 data area A7A is
marked with a known value. Test Cl is called, and on conclusion the
stored Value checked to verify that no more than the intended number
of words were read back into A7A.

Next a two-word block is written into the midst of the data left
in the 1800 by the call on test Cl. This same block is read back and
the words immediately before and after the return block are checked for
no change. Then four words are read back from the 1800 including the
original two in the middle. This permits the PDP-7 to verify that the
original transfer involved only the desired number of words.

The call on test Cl uses the alternate entry TSTC.1 which results
in no error type-outs from test Cl itself. Only errors detected in test

C2 will be typed by this test.

129

Note that the requirement that SIZE be at least 7 is checked by the

test on entry.

Switch 8 - General Data-Break Tests - (C3). This test is intended

to exercise the Interface under conditions somewhat like those that might
be found in actual applications. The test c;nsists of two sections: a
calling program that sets up the parameters of a given test, and a general
subroutine for carrying out a test.

A test is specified by giving four parameters: the frame size conditions
and number of blocks for the transfer over, and those for the transfer
back. The calling program accesses a series of four-word sets which
specify these parameters and uses them to call the general tester. The
only constraint on these control words is that the number of words written
into the 1800 must not be less than the number read for correct results.

This is not checked by the called routine.

The general subroutine (TSTGEN) uses the four parameters to calculate
the remaining parameters of the test. Then a block of randomly generated
numbers of the desired length is computed. This block is transmitted to
the 1800 using the given frame conditions. Next the PDP-7 computes an
image of the core of the 1800 as it should look after this transfer, by
doing a full simulation of the interface behavior. The data in the
1800 is then read back in 16/16 frame mode and compared to the anticipated
values. Next the data is read back in the original frame conditions which
should return it to its original word and bit pattern. This is also compared

with the original pattern to verify correct operation.

130

Switch 9 - Permute 1800 Base Address - (C4). This is not really a

test but rather a routine to vary the 1800 address pérameter A18A used
to cycle through the 1800 address space. The assumption is made that
locations 0 and 1 of 1800 memory are to be avoided. These locations
would normally contain a BSC L /0000 oerossibly simply a WAIT in
location 0.

Switch 10 - Data Table Shift Test - (C5). This curious diagnostic

grew out of a real hardware debugging problem. On certain occasions
it appeared that a block of data would be transferred correctly in all
respects except that the entire block would be moved up or down a small
number of words in memory. This test seeks to identify such a fault
and print out the number of words by which the block shifted (rather
than give an entire table of error messages such as test Cl would give.)
Test Cl is called at its alternate entry TSTC.1. Then the middle
word of the transferred block (computed dynamically from SIZE) is sought
in the returned block A7A. If found in the correct location the test
is over. If found elsewhere, a comment is given telling the offset
relative to where it should have been. The message 'SHIFT BY 2" might
mean, for example, the data was read into the 1800 two locations too
high or back into the PDP-7 two locations too high. (Or even one too
high in each direction.) The cases are best distinguished by halting
after this type-out and examining 1800 core. If the desired data item
cannot even be found in the expected area the message 'SHIFT OUT OF

BOUNDS'" is given.

131

Switch 11 - Simple Formatting. Errors in Section C will often result
in more than one line of type-out. When errors from successive cycles
through the selection loop are typed one after the other, it may be
difficult to separate whether a given error type-out occurred on the
same pass or on a later pass of the selection loop. To resolve this
problem, switch 11 may be selected. This causes an extra carriage return
to be typed after each time through the selection loop which resulted
in an error. Thus errors on the same pass are grouped together and errors
on successive passes are separated. This option is recommended as the

normal case with Section C tests.

Block Transfer Conventions - (CX). A single block transfer subroutine

is used to initiate and complete all data break transfers. The Interface
is seized using Test & Set (Pending). Then the appropriate initial
register values are obtained from the calling sequence and loaded into
the Interface registers. Next there are two possible courses of action:
normal case and Halt variation. In the normal case, the Interface is
given a Start command to initiate the data transfer. The transfer is con-
sidered done when the Count Register goes to zero, after which the SKPOPC
(skip on operation complete) is tested. Next the final state of the
registers is saved for possible use by the calling routines and the
Status Register is cleared (in particular, bit 6 is cleared.)

If the Halt test is specified (indirectly by switch 12), a random
delay proportional to the length of the data transfer is set up to
begin with the issuance of the Start command. At the end of the delay,
an Interface Halt is given. After waiting for the physical halt, the

registers are saved., If switch 13 is up the program halts to permit

132

visual examination of the Interface registers. Next a Blast completely
resets the Interface, the four registers are reloaded and the Interface
restarted. Control passes to the normal termination procedure.

Because a Blast is given and the Interface is not re-seized when
testing the Halt, this variation canhot be used with the 1800 simultaneously
running data break tests.

Note that the Halt test is selected independently of the other tests
and "underneath'" them, as it were. Thus any errors in the Halt and
restart procedure are detected as data errors by the higher-level tests.
(Recall that such a Halt and restart sequence is supposed to be

"transparent' to any on-going data transfers.)

C.3 Section B - Cooperative Tests

The most complex group of tests is the cooperative. To carry out
these tests requires the active participation of both machines.

These tests may be used in either of two modes: auto-sequencing
and nonauto-seguencing. In the nonauto-sequencing mode, the test to
be performed is selected by switches on each computer. Then the two
tests are started simultaneously (actually 1800 first). Only one test
may be selected and it will continue indefinitely. If any error is detected
by either machine it will probably be necessary to restart the test manually.
After describing the individual tests, the auto-sequence mode will be
described. (Note that certain register tests and block-transfer tests
can also be performed simultaneously by both computers; see C.2.1 and
C.2.2.)

There are five tests in this group selected by switches 6 through 10.

Switch 17 down indicates nonauto-sequence mode.

133

To describe these tests, the behavior of each machine will be
alternately described. These tests are constructed so that each action
by one machine is used as the cue for the other machine to proceed.
Thus, failure of any response will eventually be caught by a time-out
at each step in the opposite machine. Further, these tests are
symmetric with respect to the two CPU's.

Switch 6 - Cycle All Attention Cédes - (Bl). This tests the ability

to write and read all 32 values of the attention code portion of Status.

PDP-7: Zero control variable.

(T1L) PDP-7: Write into attention register and set attention to
1800.

1800: Read attention code and compare with expected
value. Eché complement of expected value and
clear own attention bit. Set interrupt to PDP-7.

PDP-7: Read code and compare with expected value.
Increment control variable and set into own
attention code. Clear own attention bit. Go
to (T1L). |

Switch 8 - Test & Set Immediate - (B3). This sequence tests the

ability of the Test § Set command to resolve seize attempts with and
without the Interface previously seized.
(T3L) PDP-7: Attempt Test § Set with the Interface clear. Read
Status to verify that it worked.
1800: 1800 sees TSET7 bit and attempts its own Test & Set.
With PDP-7 in control, this should not work. Read
Status to verify. Then clear TSET7 and immediately

do Test & Set. This time it should work. Verify.

PDP-7:

134

Sees TSET18 and attempts to do Test § Set. Should

not work. Verify. Then clear TSET18 and go to (T3L).

Switch 9 - Test & Set Pending - (B4). This exercise tests the ability

of the pending seize to wait if the Interface is already seized and to

o

generate an interrupt when Interface becomes available. Only Status

is checked; actual interrupt is assumed from test AS.

(T4L)

PDP-7:

1800:

PDP-7:

Do Test & Set (Pending)‘command which works immediately
setting TSET7+ENBL7+OPCMPL in Status. Verify. Reset
ENBL7+0PCMPL leaving TSET7. Set ATN18 for 1800 cue

to proceed. | |
Clear ATN18. Attempt Test § Set (Pending) which should
have no effect immediately. Verify only TSET7 in
Status. Next clear TSET7 which allows the pending seize
to occur setting TSET18+ENBL18+OPCMPL in STATUS.
Verify. Reset all 3 bits. Try Test & Set (Pending)
again, and verify that it works.

Clear ENBL18+OPCMPL. Set ATN7 for PDP-7 cue.

Clear ATN7. Verify only TSET18 in STATUS. Attempt
Test & Set. No effect immediately. Then clear TSET18
which permits pending seize to occur. TSET7+ENBL7+

OPCMPL should be set in Status. Clear all three bits.

Go to (T4L).

Auto-Sequence Mode: In the auto-sequence mode, the PDP-7 acts as

a simple controller to tell the 1800 which test is to be performed and

for how long.

Each test in group B whose switch is up is performed a

135

fixed number of times, then a new test begun. If an error is detected
by either machine, a type-out is given and then it waits for a flag
from the other machine saying that it too has detected an error. Then
the PDP-7 starts a new test from the beginning. The error action of
one machine will prevent if from continuing, thereby guaranteeing an
error in the other machine.

The start-up sequence is as follows: After the PDP-7 message at the
beginning of part B, select the switches for the desired tests. Then
start the PDP-7 just before the 1800. After clearing the Interface
(BLAST), the PDP-7 writes into the AREG the number of the test to be
performed. When the 1800 sees this number it clears the AREG and proceeds
to the given test. The test is normally terminated by the PDP-7 setting
the mode bit in the Status Register; when the 1800 senses this bit, it
clears it and waits to begin the next test. Then the PDP-7 gives a new
test number in the AREG and so the world goes 'round.

If an error is detected, no attempt is made to continue from the
point of the error in the current test. Rather an error message is given,
then PDP-7 waits for the free bit to be set by the 1800, and the 1800
waits for the mode bit to be set by the PDP-7. When both have occurred,

a new test is begun from the top. If a time-out occurs during this wait,

it is considered a fatal error and the PDP-7 halts. A manual restart

is necessary.

IIHIWIIWHIHIH)lHHIII)l)lml)IIHIIW(UIIHWINJI

015 02826 3690

1356

cadion of Hitlo, body of &

and indexing

ann ofdtic'n m ne overall report is classitied)

;RVTVV (Corporate authory

IR A

Concomng

Project
- of Michigan

j2a. REPORY S.ﬁi‘u&if‘\(CLASSIFICATION
Unclassified

BT EROTP

i Tcgnthax Report

\,ﬂ NO s (Type of report and inclusive dates)

(5. AUTHORIS) (First naiie, middie initial, last name)

Foy, Jr.
Brender

D. R
J. A,

Frantz
Miller

6. REPORT DATE
August 1670

a. TOT AL NO. OF PACGES ¥7b. NO. OF REFS

T

OR GRANT NO.

0SA 3050

&a, CONTRACY

DA-49-087%

be PROJE

CT NO.

S&, ORIGINATOR’S REPORT NUMBER(S)

v

Technical Report 31

9. OTHER REPORT NO(S) (Any other nunbers that may be assigned
this roport)

STATEMENT

o N o ({ > . Py 5 1
Gualified requesters may obtain copies of this report

Feom DDC,

F41, sUPELEMENT ARY NOTES

12, SPONSORING MILITARY ACTIVITY i

Advanced Research Projects Agency

P S S T R S AR

L AR T

Y

P98, ABSTRACY

Teport

; a DEC PDP-7 computer,
g ;’m ¥

memory of the other,

iiel with

hoa system of
to control,

; autons

program execution;

ABSTRACT
describes an interface between an IBM
It has the following features:
7 of blocks of data divectly from the memory of one computer
at up to 125,000 words per second, in

2) it allows a program running on
chine to interact asynchronously with one running on the other
"attention" interrupts;
being symmetric to both computers;
1y, in “either of two modes, for the difference in word
iength between the PDP-7 and the 1800.

1800 computer and
1) it allows the

relatively
4} it compensates

3) it is

i Ffe

UNCLASSIFIED

Security Classification

—UNGLASSTFIED 137
ecurity Classification -

14, 8

. e s e e v e R W INK A L_-_I_l_ﬁiﬂ 'I‘.'!msg
KEY WORDS - .ROLE wT ROLE wT ROLE 1 WT

[SRTRVRURAY (IS S vy o D S R e s B B3 & Y

-t

¥ by o
| o
(. ! o ‘ ' :
vey, b
ye
o
: BRI
: I
.1
H 7
o
P
ERIPRNAS]
i
.

O B pitil AR oatedl bt b e

ONCLASSIFIED .=
. Security Classification *

