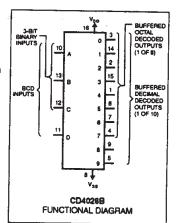
Data sheet acquired from Harris Semiconductor SCHS033C – Revised October 2003

BCD-to-Decimal Decoder

High-Voltage Types (20-Volt Rating)

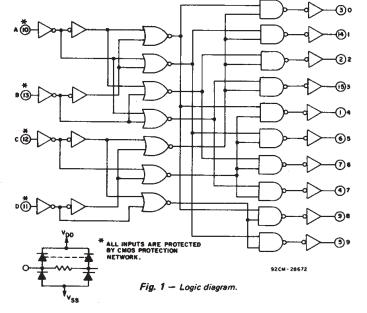
■ CD4028B types are BCD-todecimal or binary-to-octal decoders consisting of buffering on all 4 inputs, decodinglogic gates, and 10 output buffers. A BCD code applied to the four inputs, A to D, results in a high level at the selected one of 10 decimal decoded outputs. Similarly, a 3-bit binary code applied to inputs A through C is decoded in octal code at output 0 to 7 if D = "0". High drive capability is provided at all outputs to enhance dc and dynamic performance in high fan-out applications.


The CD4028B-Series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

Features:

- BCD-to-decimal decoding or binary-to-octal decoding
- High decoded output drive capability
- "Positive logic" inputs and outputs....
 decoded outputs go high on selection
 Medium-speed operation....
 - tpHL, tpLH = 80 ns (typ.) @ V_{DD} = 10 V
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full packagetemperature range):
 - 1 V at V_{DD} = 5 V
 - 2 V at V_{DD} ≖ 10 V
- 2.5 V at V_{DD} = 15 V
- 5-V, 10-V, and 15-V parametric ratings
 Meets all requirements of JEDEC
- Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices''

Applications:


- Code conversion
 Indicator-tube decoder
- Address decoding—memory selection control

CD4028B Types

• –	10	16	
2 -	2	15	
0	3	-14	⊢i –
7-4	4	13	⊢ ∎
9	5	15	c
5	6	11	o
6	7	ю	⊨ ∧
'ss —	8	9	- B
1			1
		9	205-24471

Top View TERMINAL DIAGRAM

MAXIMUM RATINGS, Absolute-Maximum Values:

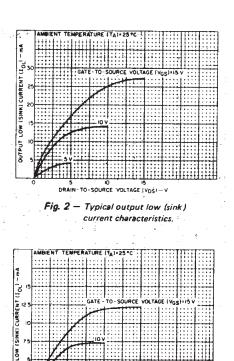
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS0.	5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	
For T _A = +100 ^o C to +125 ^o C Derate Linearity at 12m	W/ºC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max	+265°C

TABLE I - TRUTH TABLE

D	С	B	A	0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0
1	Ŧ	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0
-	1 Ни	1 GH	_	0 . VI		0	0	0	0 = L		0 N L		

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:


CHARACTERISTIC	.) t	IMITS	UNITS
	MIN.	MAX.	
Supply Voltage Range (For T _A = Full Package			
Temperature Range)	3	18	V

CHARACTER	CON	DITIO	IS	LIMI	LIMITS AT INDICATED TEMPERATURES (°C)									
	Vo	VIN	VDD						+25		UNITS			
	(V)	(V)	(V).	-55	-40	+85	+125	Min.	Тур.	Max.				
Quiescent Device	-	0,5	5	5	5	150	150	- :	0.04	5				
ISTIC Quiescent Device Current, IDD Max. Output Low (Sink) Current IOL Min. Output High (Source) Current, IOH Min. Output Voltage: Low-Level, VOL Max. Output Voltage: High-Level, VOH Min. Input Low Voltage, VIL Max. Input High Voltage, VIL Min.	-	0,10	10	10	10	300	300	-	.0.04	. 10				
	-	0,15	15	20	20	600	600	- 7	0.04	20	μA			
	-	0,20	20	100	100	3000	3000	-	0,08	100	1			
Output Low	0.4	0,5	5	0.64	0.61	0,42	0,36	0.51	1	-	1			
IOL Min.	0,5	0,10	10	1.6	1.5	1,1	0.9	1.3	2.6	-	1			
	1,5	0,15	15	4.2	4	2.8	2.4	34	6.8	- 1	1 • •			
(Source) Current,	4.6	0,5	5	-0.64	-0,61	-0,42	-0.36	-0.51	1	-	mA			
	2.5	0,5	· 5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	1			
	9.5	0,10	10	- 1.6	-1,5	-1.1	-0.9	-1.3	-2.6	- 1				
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	- 6.8	-	1			
	-	0,5	5		0	.05		-	0	0.05				
Low Level,		0,10	10	_	0	.05		-	0	0.05				
•UL	-	0,15	15		0	05		-	0	0.05				
	-	0,5	5		4	95		4.95	5	-	Ť			
v .	-	0,10	10		9.	95		9,95	10	-				
VOH Num:	-	0,15	15		14	.95		14.95	15	-				
•	0.5, 4.5]	5		1	.5		-	-	1.5				
	1, 9	-	10			3		-		3				
v1[wax.	1.5,13.5	_	15			4		-	-	4				
	0.5, 4,5	_	5		3	.5		3,5	-	-	V			
Voltage,	1, 9	_	10			7		7	-	-]			
	1.5,13,5	-	15		1	1		11	-	-]			
Input Current IIN Max.	-	0,18	18	±0,1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ			

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	TEST CONDITIONS	LIM		
CHARACTERISTIC	V _{DD} (V)	Тур.	Max.	UNITS
Propagation Delay Time:	5	175	350	ns
^t PHL ^{, t} PLH	10	80	160	
	15	60	120	
	5	100	200	
Transition Time	10	50	100	ns
^t THL ^{, t} TLH	15	40	80	
Input Capacitance, C _{IN}	-	5	7.5	pF

COMMERCIAL CMOS HIGH VOLTAGE ICS

3

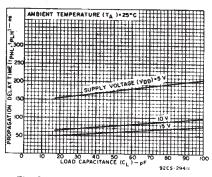


Fig. 3 – Minimum output low (sink) current characteristics.

Fig. 4 — Typical propagation delay time as a function of load capacitance.

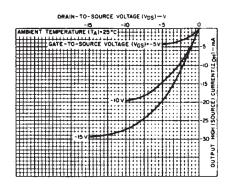


Fig. 5 – Typical output high (source) current characteristics.

TABLE II - CODE CONVERSION CHART

Γ					INPU	TC	ODES	;																	
Hexa Decimal			Decimal																						
INPUTS			S	IT IARY	IT ۸۷	EXCESS-3	EXCESS-3 GRAY	AIKEN	2-1					I	ou	ТР	UT	N	υM	8 E	R				
D	С	В	A	4-BI BIN	4 6 7 8	Ň	ЖĞ	A	4-2-2-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0			0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1			1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	2	3		0	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	3	2	0	3	3		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	4	7	1	4	4		0	0	0	0	1	0	0	0	0	Û	0	0	0	0	0	0
0	1	0	1	5	6	2			3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	1	1	0	6	4	3	1		4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	7	5	4	2			0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	8	15	5				0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	9	14	6			5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	1	0	10	12	7	9		6	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	1	1	11	13	8		5		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	1	0	0	12	8	9	5	6		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1	0	1	13	9		6	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	1	0	14	11		8	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1	1	1	1	15	10		7	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

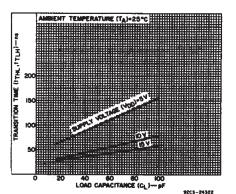


Fig. 8 - Typical transition time as a function of load capacitance.

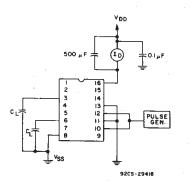


Fig. 10 - Dynamic power dissipation test circuit.

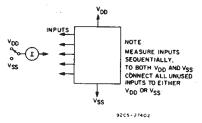


Fig. 9 - Input current test circuit.

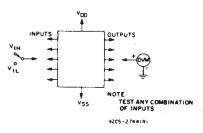



Fig. 11 - Input voltage test circuit.

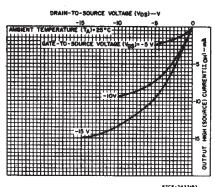
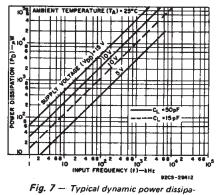
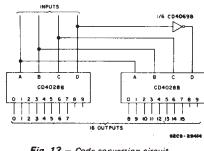
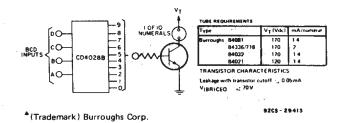
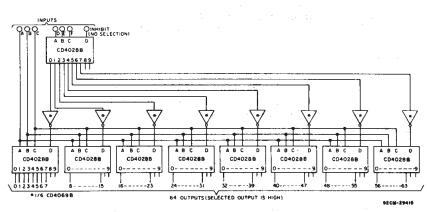
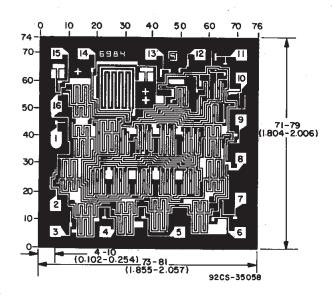




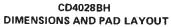

Fig. 6 — Minimum output high (source) current characteristics.


tion as a function of input frequency.

TYPICAL APPLICATIONS




The circuit shown in Fig.13 converts any 4bit code to a decimal or hexadecimal code. Table 2 shows a number of codes and the decimal or hexadecimal number in these codes which must be applied to the input terminals of the CD4028B to select a particular output. For example: in order to get a high on output No. 8 the input must be either an 8 expressed in 4-Bit Binary code, a 15 expressed in 4-Bit Gray code, or a 5 expressed in Excess-3 code.



Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .