FAIRCHILD

SEMICONDUCTOR TM

CD4049UBC • CD4050BC Hex Inverting Buffer • Hex Non-Inverting Buffer

General Description

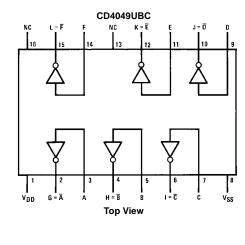
The CD4049UBC and CD4050BC hex buffers are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. These devices feature logic level conversion using only one supply voltage (V_{DD}). The input signal high level (V_H) can exceed the V_{DD} supply voltage when these devices are used for logic level conversions. These devices are intended for use as hex buffers, CMOS to DTL/ TTL converters, or as CMOS current drivers, and at V_{DD} = 5.0V, they can drive directly two DTL/TTL loads over the full operating temperature range. October 1987 Revised April 2002

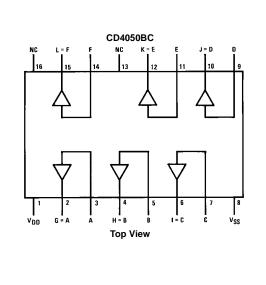
Features

- Wide supply voltage range: 3.0V to 15V
- Direct drive to 2 TTL loads at 5.0V over full temperature
- High source and sink current capability
- \blacksquare Special input protection permits input voltages greater than V_{DD}

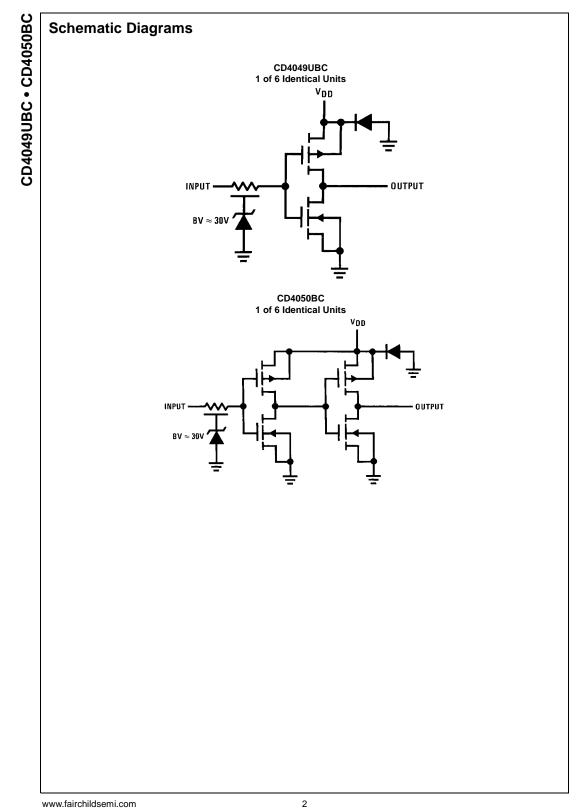
Applications

- CMOS hex inverter/buffer
- CMOS to DTL/TTL hex converter
- CMOS current "sink" or "source" driver
- CMOS HIGH-to-LOW logic level converter


Ordering Code:


Order Number	Package Number	Package Description
CD4049UBCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4049UBCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4050BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4050BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagrams

Pin Assignments for DIP

© 2002 Fairchild Semiconductor Corporation DS005971

Absolute Maximum Ratings(Note 1)

(Note 2)

Symbol

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	-0.5V to +18V
Voltage at Any Output Pin (V _{OUT})	$-0.5V$ to $V_{\mbox{\scriptsize DD}}+0.5V$
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Supply Voltage (V _{DD})	3V to 15V
Input Voltage (V _{IN})	0V to 15V
Voltage at Any Output Pin (V _{OUT})	0 to V _{DD}
Operating Temperature Range (T _A)	
CD4049UBC, CD4050BC	-55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recom-mended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

+25°C

Тур

Max

+125°C

Min Max

Units

μΑ

V

V

V

V

V

V

mA

mA

μΑ

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Min

–55°C

Min Max

I _{DD}	Quiescent Device Current	$V_{DD} = 5V$		1.0		0.01	1.0		30	Γ
		$V_{DD} = 10V$		2.0		0.01	2.0		60	
		$V_{DD} = 15V$		4.0		0.03	4.0		120	
V _{OL}	LOW Level Output Voltage	$V_{IH} = V_{DD}, \ V_{IL} = 0V, \label{eq:VIH}$								ſ
		I _O < 1 μA								
		$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$V_{IH} = V_{DD}, V_{IL} = 0V,$								Γ
		I _O < 1 μA								
		$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
VIL	LOW Level Input Voltage	I _O < 1 μA								Γ
	(CD4050BC Only)	$V_{DD}=5V,\ V_O=0.5V$		1.5		2.25	1.5		1.5	
		$V_{DD} = 10V, V_{O} = 1V$		3.0		4.5	3.0		3.0	
		$V_{DD} = 15V, V_{O} = 1.5V$		4.0		6.75	4.0		4.0	
VIL	LOW Level Input Voltage	I _O < 1 μA								Γ
	(CD4049UBC Only)	$V_{DD}=5V,\ V_O=4.5V$		1.0		1.5	1.0		1.0	
		$V_{DD} = 10V, V_O = 9V$		2.0		2.5	2.0		2.0	
		$V_{DD} = 15V, V_{O} = 13.5V$		3.0		3.5	3.0		3.0	
VIH	HIGH Level Input Voltage	I _O < 1 μA								Γ
	(CD4050BC Only)	$V_{DD} = 5V, V_{O} = 4.5V$	3.5		3.5	2.75		3.5		
		$V_{DD} = 10V, V_O = 9V$	7.0		7.0	5.5		7.0		
		$V_{DD} = 15V, V_{O} = 13.5V$	11.0		11.0	8.25		11.0		
VIH	HIGH Level Input Voltage	I _O < 1 μA								
	(CD4049UBC Only)	$V_{DD} = 5V, \ V_O = 0.5V$	4.0		4.0	3.5		4.0		
		$V_{DD} = 10V, V_O = 1V$	8.0		8.0	7.5		8.0		
		$V_{DD} = 15V, V_{O} = 1.5V$	12.0		12.0	11.5		12.0		
I _{OL}	LOW Level Output Current	$V_{IH} = V_{DD}, V_{IL} = 0V$								
	(Note 4)	$V_{DD} = 5V, \ V_O = 0.4V$	5.6		4.6	5		3.2		
		$V_{DD} = 10V, V_{O} = 0.5V$	12		9.8	12		6.8		
		$V_{DD} = 15V, V_{O} = 1.5V$	35		29	40		20		
I _{OH}	HIGH Level Output Current	$V_{IH} = V_{DD}, V_{IL} = 0V$								
	(Note 4)	$V_{DD}=5V,\ V_O=4.6V$	-1.3		-1.1	-1.6		-0.72		
		$V_{DD} = 10V$, $V_O = 9.5V$	-2.6		-2.2	-3.6		-1.5		
		$V_{DD} = 15V, V_{O} = 13.5V$	-8.0		-7.2	-12		-5		L
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	Γ
		$V_{DD}=15V,V_{IN}=15V$		0.1		10 ⁻⁵	0.1		1.0	L
Note 3	$V_{SS} = 0V$ unless otherwise specified.									
		3					١	www.fai	rchildse	en

Conditions

DC Electrical Characteristics (Note 3)

Parameter

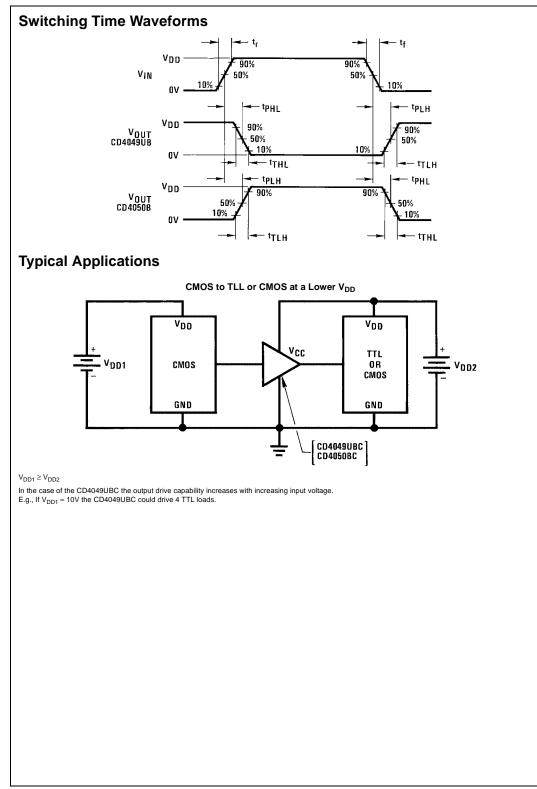
DC Electrical Characteristics (Continued)

Note 4: These are peak output current capabilities. Continuous output current is rated at 12 mA maximum. The output current should not be allowed to exceed this value for extended periods of time. I_{OL} and I_{OH} are tested one output at a time.

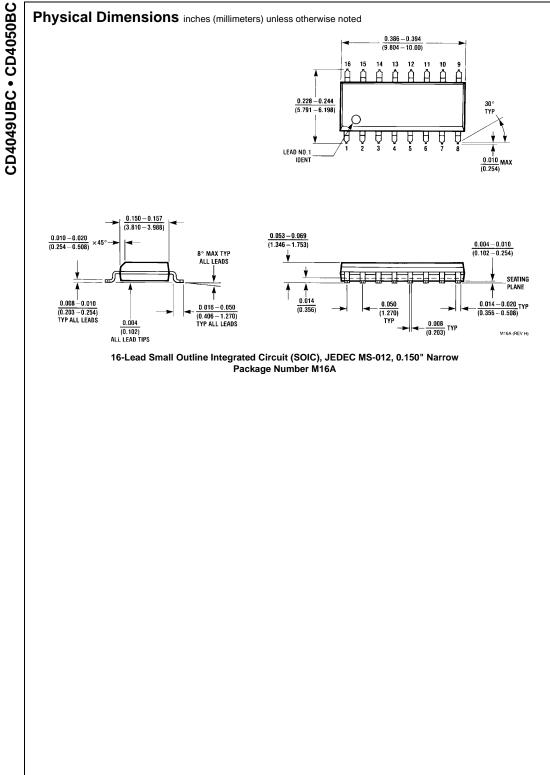
AC Electrical Characteristics (Note 5) CD4049UBC

 $T_A = 25^{\circ}C$, $C_L = 50$ pF, $R_L = 200$ k, $t_r = t_f = 20$ ns, unless otherwise specified

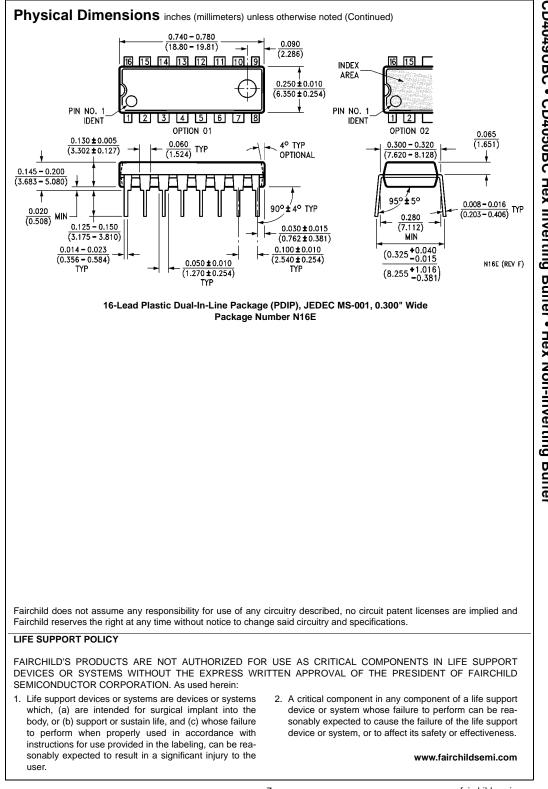
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		30	65	
	HIGH-to-LOW Level	$V_{DD} = 10V$		20	40	ns
		$V_{DD} = 15V$		15	30	
^t PLH	Propagation Delay Time	$V_{DD} = 5V$		45	85	
	LOW-to-HIGH Level	$V_{DD} = 10V$		25	45	ns
		$V_{DD} = 15V$		20	35	
t _{THL}	Transition Time	$V_{DD} = 5V$		30	60	
	HIGH-to-LOW Level	$V_{DD} = 10V$		20	40	ns
		$V_{DD} = 15V$		15	30	
t _{TLH}	Transition Time	$V_{DD} = 5V$		60	120	
	LOW-to-HIGH Level	$V_{DD} = 10V$		30	55	ns
		$V_{DD} = 15V$		25	45	
C _{IN}	Input Capacitance	Any Input		15	22.5	pF


Note 5: AC Parameters are guaranteed by DC correlated testing.

AC Electrical Characteristics (Note 6)


CD4050BC $T_A = 25^{\circ}C$, $C_L = 50$ pF, $R_L = 200k$, $t_r = t_f = 20$ ns, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Propagation Delay Time	$V_{DD} = 5V$		- 5 P	110	•
t _{PHL}	10	55			-	
	HIGH-to-LOW Level	$V_{DD} = 10V$		25	55	ns
		$V_{DD} = 15V$		20	30	
t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		60	120	
	LOW-to-HIGH Level	$V_{DD} = 10V$		30	55	ns
		$V_{DD} = 15V$		25	45	
t _{THL}	Transition Time	$V_{DD} = 5V$		30	60	
	HIGH-to-LOW Level	$V_{DD} = 10V$		20	40	ns
		$V_{DD} = 15V$		15	30	
t _{TLH}	Transition Time	$V_{DD} = 5V$		60	120	
	LOW-to-HIGH Level	$V_{DD} = 10V$		30	55	ns
		$V_{DD} = 15V$		25	45	
CIN	Input Capacitance	Any Input		5	7.5	pF


Note 6: AC Parameters are guaranteed by DC correlated testing.

CD4049UBC • CD4050BC

www.fairchildsemi.com

CD4049UBC • CD4050BC Hex Inverting Buffer • Hex Non-Inverting Buffer

www.fairchildsemi.com