SEMICONDUCTOR

November 1983 Revised August 2000

CD4051BC • CD4052BC • CD4053BC

Single 8-Channel Analog Multiplexer/Demultiplexer • Dual 4-Channel Analog Multiplexer/Demultiplexer • Triple 2-Channel Analog Multiplexer/Demultiplexer

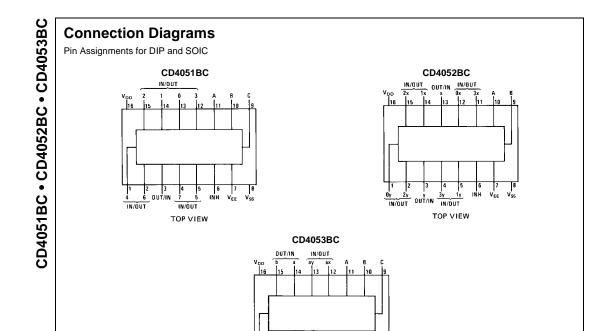
General Description

The CD4051BC, CD4052BC, and CD4053BC analog multiplexers/demultiplexers are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage currents. Control of analog signals up to $15V_{p-p}$ can be achieved by digital signal amplitudes of 3-15V. For example, if $V_{DD} = 5V$, $V_{SS} = 0V$ and $V_{EE} = -5V$, analog signals from -5V to +5V can be controlled by digital inputs of 0-5V. The multiplexer circuits dissipate extremely low quiescent power over the full $V_{DD}-V_{SS}$ and $V_{DD}-V_{EE}$ supply voltage ranges, independent of the logic state of the control signals. When a logical "1" is present at the inhibit input terminal all channels are "OFF".

CD4051BC is a single 8-channel multiplexer having three binary control inputs. A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned "ON" and connect the input to the output.

CD4052BC is a differential 4-channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 or 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

CD4053BC is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.


Features

- Wide range of digital and analog signal levels: digital 3 – 15V, analog to 15V_{p-p}
- Low "ON" resistance: 80Ω (typ.) over entire 15V_{p-p} signal-input range for V_{DD} V_{EE} = 15V
- High "OFF" resistance: channel leakage of ±10 pA (typ.) at V_{DD} - V_{EE} = 10V
- Logic level conversion for digital addressing signals of $3 15V (V_{DD} V_{SS} = 3 15V)$ to switch analog signals to $15 V_{p-p} (V_{DD} V_{EE} = 15V)$
- Matched switch characteristics: $\Delta R_{ON} = 5\Omega$ (typ.) for V_{DD} - V_{EE} = 15V
- Very low quiescent power dissipation under all digital-control input and supply conditions: 1 µ W (typ.) at V_{DD} - V_{SS} = V_{DD} - V_{EE} = 10V
- Binary address decoding on chip

Ordering Code:

Order Number	Package Number	Package Description
CD4051BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
CD4051BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4051BCMTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
CD4051BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
CD4052BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
CD4052BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4052BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
CD4053BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
CD4053BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4053BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

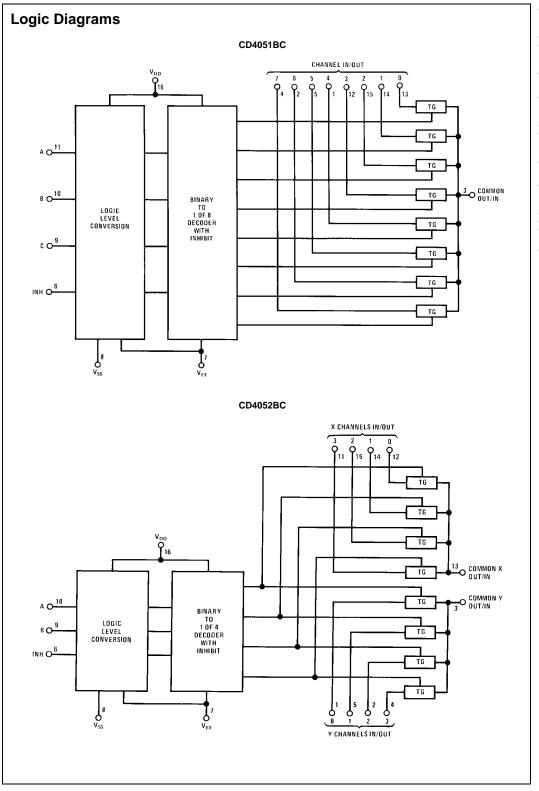
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

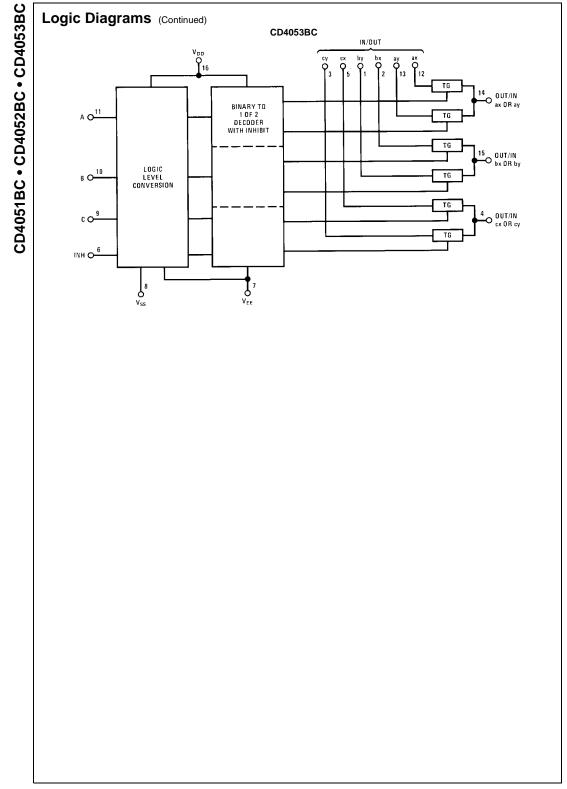
Truth Table

	INPUT	STATES	"0	N" CHANNE	LS	
INHIBIT	С	В	Α	CD4051B	CD4052B	CD4053B
0	0	0	0	0	0X, 0Y	cx, bx, ax
0	0	0	1	1	1X, 1Y	cx, bx, ay
0	0	1	0	2	2X, 2Y	cx, by, ax
0	0	1	1	3	3X, 3Y	cx, by, ay
0	1	0	0	4		cy, bx, ax
0	1	0	1	5		cy, bx, ay
0	1	1	0	6		cy, by, ax
0	1	1	1	7		cy, by, ay
1	*	*	*	NONE	NONE	NONE

bx

by IN/OUT V_{SS}


 V_{EE}


INН

OUT/IN IN/OUT

TOP VIEW

*Don't Care condition.

Absolute Maximum Ratings(Note 1)

DC Supply Voltage (V _{DD})	$-0.5\ V_{DC}$ to +18 V_{DC}
Input Voltage (V _{IN})	$-0.5 \text{ V}_{\text{DC}}$ to V_{DD} +0.5 V_{DC}
Storage Temperature	
Range (T _S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(soldering, 10 seconds)	260°C

Recommended Operating Conditions

DC Supply Voltage (V _{DD})	+5 V_{DC} to +15 V_{DC}
Input Voltage (V _{IN})	0V to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	

CD4051BC/CD4052BC/CD4053BC -40°C to +85°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera-ture Range" they are not meant to imply that the devices should be oper-ated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

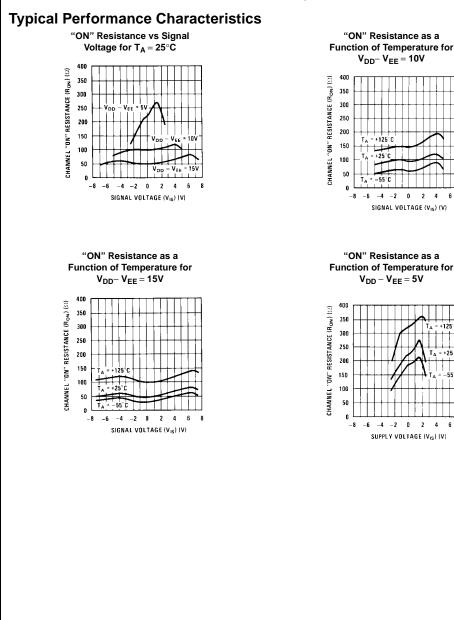
CD4051BC • CD4052BC • CD4053BC

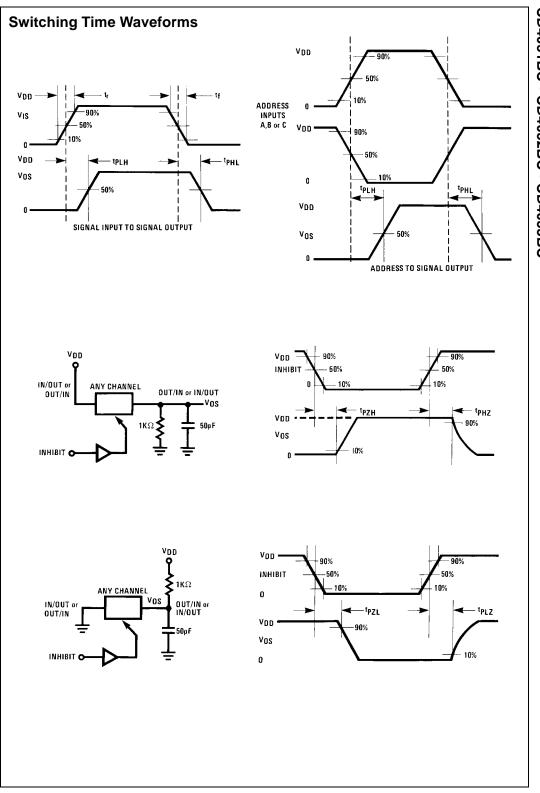
DC Electrical Characteristics (Note 2)

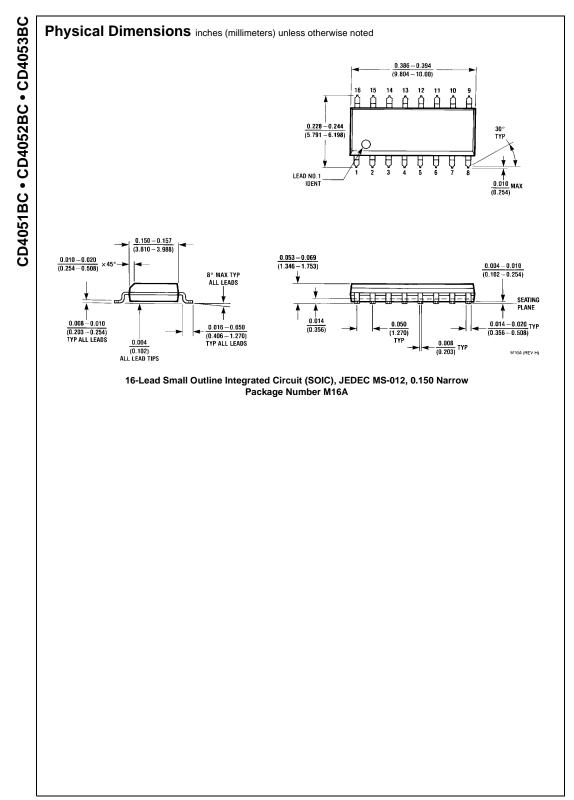
Symbol Parameter		Conditions		-40°C			+ 25 °		+85°C		Units
Symbol	Parameter	Conc	litions	Min	Max	Min	Тур	Max	Min	Max	Unit
Control A	, B, C and Inhibit	1									
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V	$V_{EE} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μA
		V _{DD} = 15V, V _{IN} = 15V	$V_{EE} = 0V$		0.1		10 ⁻⁵	0.1		1.0	μA
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$			20			20		150	μA
		$V_{DD} = 10V$			40			40		300	μA
		$V_{DD} = 15V$			80			80		600	μA
Signal Inp	outs (VIS) and Outputs (VOS)									
R _{ON}	"ON" Resistance (Peak	$R_L = 10 \ k\Omega$	V _{DD} = 2.5V,								
	for $V_{EE} \le V_{IS} \le V_{DD}$)	(any channel	$V_{EE} = -2.5V$		050		070	4050		4000	
		selected)	or $V_{DD} = 5V$,		850		270	1050		1200	Ω
			$V_{EE} = 0V$								
			$V_{DD} = 5V$,								
			$V_{EE} = -5V$				100				
			or $V_{DD} = 10V$,		330		120	400		520	Ω
			$V_{EE} = 0V$								
			V _{DD} = 7.5V,								
			$V_{EE} = -7.5V$								
			or $V_{DD} = 15V$,		210		80	240		300	Ω
			$V_{FF} = 0V$								
∆R _{ON}	Δ "ON" Resistance	$R_L = 10 \ k\Omega$	V _{DD} = 2.5V,								
	Between Any Two	(any channel	V _{EE} = -2.5V								
	Channels	selected)	or $V_{DD} = 5V$,				10				Ω
		,	$V_{FF} = 0V$								
			$V_{DD} = 5V$								
			$V_{FF} = -5V$								
			or $V_{DD} = 10V$,				10				Ω
			$V_{EE} = 0V$								
			V _{DD} = 7.5V,								
			$V_{EE} = -7.5V$								
			or $V_{DD} = 15V$,				5				Ω
			$V_{EE} = 0V$								
	"OFF" Channel Leakage	V _{DD} =7.5V,	V _{EE} =-7.5V								
	Current, any channel "OFF"	0/l=±7.5V, I/O			±50		±0.01	±50		±500	n/
	"OFF" Channel Leakage	Inhibit = 7.5V	CD4051		±200		±0.08	±200		±2000	n/
	Current, all channels	V _{DD} = 7.5V,									1
	"OFF" (Common	V _{EE} = -7.5V,	D4052		±200		±0.04	±200		±2000	n/
	OUT/IN)	O/I = 0V					-				
	í í	I/O = ±7.5V	CD4053		±200		±0.02	±200		±2000	n/

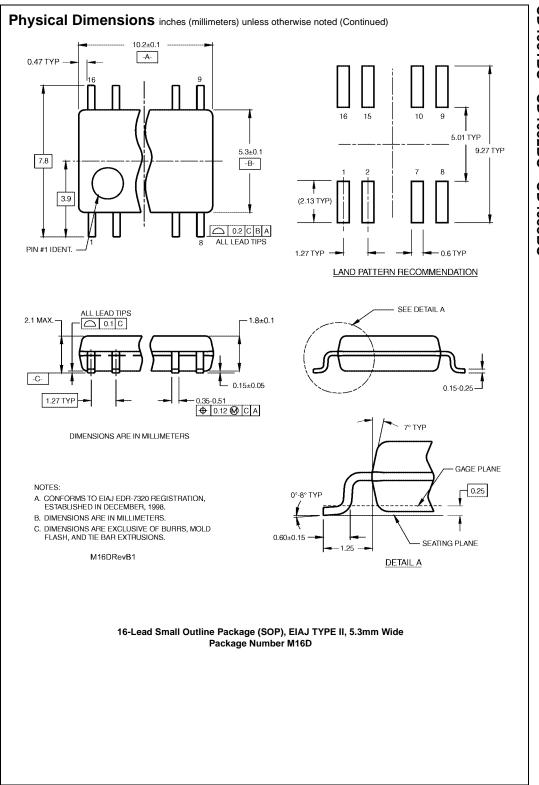
Symbol	Parameter	Conditions	−40°C		+ 25 °			+85	Units	
	Farameter		Min	Max	Min	Тур	Max	Min	Max	101
V _{IL}	LOW Level Input Voltage	$V_{EE} = V_{SS} R_L = 1 k\Omega$ to V_{SS}								Ī
		$I_{\text{IS}}\!\!<\!\!2\mu\text{A}$ on all OFF Channels								
		$V_{IS} = V_{DD}$ thru 1 k Ω								
		$V_{DD} = 5V$		1.5			1.5		1.5	
		$V_{DD} = 10V$		3.0			3.0		3.0	
		$V_{DD} = 15V$		4.0			4.0		4.0	
V _{IH}	HIGH Level Input Voltage	V _{DD} = 5	3.5		3.5			3.5		
		V _{DD} = 10	7		7			7		
		V _{DD} = 15	11		11			11		
I _{IN}	Input Current	$V_{DD} = 15V$, $V_{EE} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	L
		$V_{IN} = 0V$		-0.1		-10	-0.1		-1.0	,
		$V_{DD} = 15V$, $V_{EE} = 0V$		0.4		10 ⁻⁵	0.1		1.0	
		$V_{IN} = 15V$		0.1		10 0	0.1		1.0	ŀ

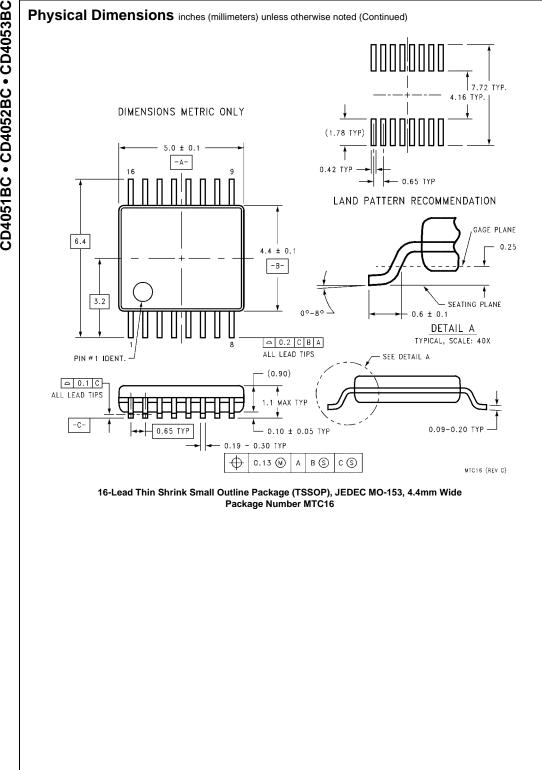
Symbol	C, $t_r = t_f = 20$ ns, unless otherwise Parameter	Conditions	V _{DD}	Min	Тур	Max	Units
PZH,	Propagation Delay Time from	$V_{EE} = V_{SS} = 0V$	5V		600	1200	ns
PZL	Inhibit to Signal Output	$R_{\rm I} = 1 \rm k\Omega$	10V		225	450	ns
	(channel turning on)	$C_{L} = 50 \text{ pF}$	15V		160	320	ns
t _{PHZ,}	Propagation Delay Time from	$V_{\text{EF}} = V_{\text{SS}} = 0V$	5V	-	210	420	ns
^t PLZ	Inhibit to Signal Output	$R_{\rm L} = 1 \rm k\Omega$	10V		100	200	ns
1 62	(channel turning off)	$C_{L} = 50 \text{ pF}$	15V		75	150	ns
C _{IN}	Input Capacitance		-		-		-
- 111	Control input				5	7.5	pF
	Signal Input (IN/OUT)				10	15	pF
C _{OUT}	Output Capacitance				-		
-001	(common OUT/IN)						
	CD4051		10V		30		pF
	CD4052	$V_{FF} = V_{SS} = 0V$	10V		15		pF
	CD4053	EE 135 01	10V		8		pF
C _{IOS}	Feedthrough Capacitance		101		0.2		pF
C _{PD}	Power Dissipation Capacitance			-	0.2		р.
OPD	CD4051				110		pF
	CD4052				140		pF
	CD4053				70		pF
Signal Inni	Its (VIS) and Outputs (VOS)				10		рі
orginal impo	Sine Wave Response	$R_{L} = 10 \text{ k}\Omega$					
	(Distortion)	$f_{IS} = 1 \text{ kHz}$	10V		0.04		%
		$V_{IS} = 5 V_{D-D}$	100		0.04		70
	Frequency Response, Channel	$V_{EE} = V_{SI} = 0V$ $R_{L} = 1 k\Omega, V_{EE} = 0V, V_{IS} = 5V_{p-p},$	10V		40		MHz
			100		40		IVITIZ
	"ON" (Sine Wave Input) Feedthrough, Channel "OFF"	20 log ₁₀ V _{OS} /V _{IS} = -3 dB $R_L = 1 k\Omega$, V _{EE} = V _{SS} = 0V, V _{IS} = 5V _{p-p} ,	10V		10		MHz
	Feedinfough, Channel OFF		100		10		MIL
	Creastell, Detugen Any Type	$\label{eq:20} \begin{array}{l} 20 \; log_{10} \; V_{OS} / V_{IS} = -40 \; dB \\ \\ R_L = 1 \; k\Omega, \; V_{EE} = V_{SS} = 0V, \; V_{IS} (A) = 5 V_{p-p} \end{array}$	101/		2		MU
	Crosstalk Between Any Two		10V		3		MHz
	Channels (frequency at 40 dB)	$20 \log_{10} V_{OS}(B)/V_{IS}(A) = -40 \text{ dB} (\text{Note 4})$	E\/		25	E E	
t _{PHL}	Propagation Delay Signal	$V_{EE} = V_{SS} = 0V$	5V		25	55	ns
t _{PLH}	Input to Signal Output	C _L = 50 pF	10V		15	35	ns
			15V		10	25	ns
Control Inp	outs, A, B, C and Inhibit				1	1	1
	Control Input to Signal	$V_{EE} = V_{SS} = 0V$, $R_L = 10 \text{ k}\Omega$ at both ends	4014				
	Crosstalk	of channel.	10V		65		mV (peak)
		Input Square Wave Amplitude = 10V	=) (1000	
t _{PHL,}	Propagation Delay Time from	$V_{EE} = V_{SS} = 0V$	5V		500	1000	ns
t _{PLH}	Address to Signal Output	C _L = 50 pF	10V		180	360	ns
	(channels "ON" or "OFF")		15V		120	240	ns

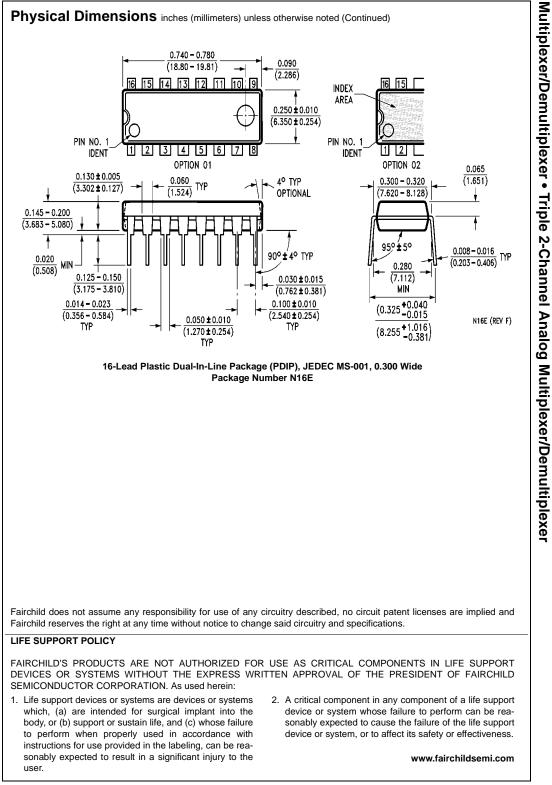

Special Considerations


In certain applications the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into IN/OUT pin, the voltage drop across the bidirectional


switch must not exceed 0.6V at $T_A {\leq} 25^\circ C$, or 0.4V at $T_A {>} 25^\circ C$ (calculated from R_{ON} values shown). No V_{DD} current will flow through R_L if the switch current flows into OUT/IN pin.


68


8



CD4051BC • CD4052BC • CD4053BC Single 8-Channel Analog Multiplexer/Demultiplexer • Dual 4-Channel Analog