

Features

- Since it has a frequency dividing function, it is able to obtain a frequency division of $1 / 2-1 / 2^{8}$ (1/256).
- The symmetry of frequency divided output is within $50 \pm 2 \%$.
- The oscillation start time has the fast starting characteristic of being 1.5 msec . or less.
- The pin arrangement is DIP 8PIN.
- Supply Voltage VDD=5.0V

Applications

- Amusement

Specifications

Item	Symbol	Conditions	Min.	Max.	Units
Output Frequency Range	Fout		11.0592	24.576	MHz
Frequency Stability	Fsby		-100	+100	ppm
Storage Temp. Range	Tsta		-40	+85	${ }^{\circ} \mathrm{C}$
Operating Temp. Range	Topr		-10	+70	${ }^{\circ} \mathrm{C}$
Supply Voltage	VdD		4.5	5	Volt
Current Consumption	IdD		-	20	mA
Duty Ratio	SYM	@ 50\% Vdd	40	60	\%
Rise/Fall Time	Tr/Tf		-	15	nS
Output Voltage-"L"	Vol		-	10\% Vdd	Volt
Output Voltage-"H"	Vor		90\% Vdd	-	Volt
Output Load	CL		-	50	pF
Start-up Time	ST		-	1.5	mS

Note: Please contact us for inquires about extended operating temperature range, available frequencies and other conditions.
All electrical characteristics are defined at the maximum load and operating temperature range.

Pin connection

1.F Outputs the original frequency (fo) of the internal quartz crystal.
2.D Outputs the frequency of programmed dividing ratio ($\mathrm{fo} / 2^{\mathrm{n}}$).
Possible to be oscillated when set to
3.ST HIGH level and stopped in oscillation when set to LOW level. when this function is now le when this the STANDBY pin to the HIGH level.
4.GND
5.A
6.B Used to program the dividing ratio for
7.C the original frequency

Supply voltage
8. $V_{D D}$

Settings of the frequency division output

Input				Output	
Select			ST	$\begin{gathered} \text { F } \\ \text { Original } \\ \text { Frequency } \end{gathered}$	D Divided Wave form
C	B	A			
L	L	L	H	fo clock	fo $1 / 2$ clock
L	L	H	H	fo clock	fo $\cdot 1 / 2^{2}$ clock
L	H	L	H	fo clock	fo $\cdot 1 / 2^{3}$ clock
L	H	H	H	fo clock	fo $\cdot 1 / 2^{4}$ clock
H	L	L	H	fo clock	fo $\cdot 1 / 2^{5}$ clock
H	L	H	H	fo clock	fo $\cdot 1 / 2^{6}$ clock
H	H	L	H	fo clock	fo $1 / 2^{7}$ clock
H	H	H	H	fo clock	fo $\cdot 1 / 2^{8}$ clock
-	-	-	L	L	L

Dimensions

EXO-3

1. Shock \& Drop • Vibration

Do not inflict excessive shock and mechanical vibration that exceeds the norm, such as hitting or mistakenly dropping, when transporting and mounting on a board. There are cases when pieces of crystal break, and pieces that are used become damaged, and become inoperable. When a shock or vibration that exceeds the norm has been inflicted, make sure to check the characteristics.

2. Cleaning

Since a crystal piece can be broken by resonance when a crystal device is cleaned by ultrasonic cleaning. Be careful when carrying out ultrasonic cleaning.

3. Soldering conditions

To maintain the product reliability, please follow recommended conditions.
Standard soldering iron conditions

	Crystal Oscillators
Soldering iron	$280^{\circ} \mathrm{C} \sim 340^{\circ} \mathrm{C}$
Time	$3+1 /-0$ sec. \max

Reflow conditions (Example)

Recommended reflow Conditions vary depending upon products. Please check with the respective specification for details.

4. Mounting Precautions

Leaded Devices

The special glass, located where the lead of the retainer base comes out, is aligned with the coefficient of thermal expansion of the lead, If the glass is damaged and cracks appear, there may be cases in which performance deteriorates and it fails to operate.
Consequently, when making the device adhere closely and applying solder, align the gap of the hole of the board with the gap of the lead and insert without excessive force.
When making the device adhere closely to a through hole board and applying solder, be careful that the solder does not get into the metal part of the retainer base and cause a short. Putting in an insulation spacer is one more method of preventing a short circuit.
When the lead is mounted floating, fix it as far as possible so that contact with other parts and the breakage due to the fatigue, and the mechanical resonance of the lead will not occur.
When the lead is bent and used, do not bend the lead directly from the base, separate it 0.5 mm or more and then bend it. When bending, before attaching to the board, fix the place where the lead comes out in advance and attach it after bending so that a crack does not occur in the glass part.

Surface Mount Devices

The lead of the device and the pattern of the board is soldered on the surface. Since extreme deformation of the board tears off the pattern, tears off the lead metal, cracks the solder and damages the sealed part of the device and there are cases in which performance deteriorates and operation fails, use it within the stipulated bending conditions. Due to the small cracks in the board resulting from mounting, please pay sufficient attention when attaching a device at the position where the warping of the board is great.
When using an automatic loading machine, as far as possible, select a type that has a small impact and use it while confirming that there is no damage.
Surface mount devices are NOT flow soldering compatible.

5. Storage Condition

Since the long hour high temperature and low temperature storage, as well as the storage at high humidity are causes of deterioration in frequency accuracy and solderability.
Parts should be stored in temperature range of -5 to $+40 \mathrm{C}^{\circ}$, humidity 40 to $60 \% \mathrm{RH}$, and avoid direct sunlight. Then use within 6 months.

6. In order to use crystal oscillators

(1)The minlature crystal oscillator for the clock utillzes a C-MOS IC and incorporates a protective circuit against static electricity However, exerclse care in the same manner as for a normal C-MOS IC.
(2)Internal capacitor is not provided in the power supply section (+DC-GNC).

To serve as overimpressed voltage and overcurrent protective device, place a bypass capacitor ($0.01 \mu \mathrm{~F}$) as near as possiblı to the (+DC-GND) terminal.
However, the capacity value is meant as a guideline.
Depending on the capacitor type, frequency characteristics vary. Accordingly, use a capacitor that matches the frequenc characteristics.
(3)Applying reverse voltage could result in damage to internal parts. Take care not to connect terminals incorrectly.
(4)Please do not use oscillators under unfavorable condition such as beyond specified range in catalog or specification sheet.
(5)Please keep oscillators away from water, salt water or harmful gas.
(6) $\mathrm{K} 50 \mathrm{H}-3 \mathrm{C} / \mathrm{FSO}$ series should be stored in humidity-controlled area after the package is unsealed, in temperature $+25 \pm 5^{\circ} \mathrm{C}$ under humidity of 65% RH, and should be mounted on PCB within 7 days.
(7)K50H-3C / FSO series has Bypass Capacitior between VDD and GND.

Test Circuits and Clock Timing Chart

CMOS Output Test Circuits

Note) Maximum load(Includes capacitances of fixture and probe)

LV-PECL Output Test Circuits

Clock Timing chart(C-MOS Output)

Clock Timing chart (LV-PECL Output)

Tape \＆Reel Specifications

－Crystal Oscillators

		KC2520	K25	K30	$\begin{aligned} & \text { FXO-61F } \\ & \text { FXO-64F } \\ & \text { VC-FXO-65F } \end{aligned}$
$\begin{aligned} & \mathrm{T} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	A	2.0 ± 0.1	2.0 ± 0.1	2.0 ± 0.1	2.0 ± 0.1
	B	4.0 ± 0.1	4.0 ± 0.1	4.0 ± 0.1	4.0 ± 0.1
	C	¢1．5＋0．1／－0	\＄1．5＋0．1／－0	¢1．5＋0．1／－0	$\phi 1.55 \pm 0.1$
	D	4.0 ± 0.1	8.0 ± 0.1	8.0 ± 0.1	8.0 ± 0.1
	E	3.5 ± 0.05	3.5 ± 0.05	5.5 ± 0.1	5.5 ± 0.1
	F	1.75 ± 0.1	1.75 ± 0.1	1.75 ± 0.1	1.75 ± 0.1
	G	8.0 ± 0.2	8.0 ± 0.2	12.0 ± 0.2	12.0 ± 0.3
	H	¢1．1 ± 0.1	¢1．55 ± 0.1	¢1．55 ± 0.1	\＄1．55 ± 0.1
	J	2.7 ± 0.1	3.5 ± 0.05	5.5 ± 0.1	5.4 ± 0.1
	L	2.2 ± 0.1	2.8 ± 0.05	3.7 ± 0.1	3.6 ± 0.1
	N	1.25 ± 0.1	1.1 ± 0.05	1.4 ± 0.1	1.7 ± 0.1
	0	0.2 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	0.3 ± 0.05
$R$$E$$E$$L$	P	\＄180＋0／－3	\＄180＋0／－3	¢180＋0／－3	¢254 ± 2
	Q	¢60＋1／－0	¢60＋1／－0	¢60＋1／－0	$\phi 100 \pm 1$
	R	$\phi 13 \pm 0.2$	$\phi 13 \pm 0.2$	$\phi 13 \pm 0.2$	¢13 ± 0.5
	S	¢21 ± 0.8	¢21 ± 0.8	¢21 ± 0.8	¢21 ± 0.8
	U	2.0 ± 0.5	2.0 ± 0.5	2.0 ± 0.5	2.0 ± 0.5
	W	9.0 ± 0.3	9.0 ± 0.3	13.0 ± 0.3	13．4＋2／－0
Qty		2000	2000	1000	1000

		$\begin{aligned} & \text { FSO-1C/1D } \\ & \text { FSO-2B/2C/2D } \\ & \text { VC-FSO-1D } \end{aligned}$	FXO－31F FXO－34F FXO－37F VC－FXO－35F VCXO－7050	$\begin{aligned} & \mathrm{K} 50 \mathrm{H} \\ & \mathrm{~K} 50 \\ & \mathrm{~K} 53 \\ & \mathrm{~K} 50 \mathrm{~V}-3 \mathrm{P} \end{aligned}$	KT21	（VC）TCXO－214C	（VC）TCXO－212C	（VC）TCXO－208C MFO－208F	KT18B	KT20A	（VC）TCXO－204C
$\begin{aligned} & \mathrm{T} \\ & \mathrm{~A} \\ & \mathrm{P} \\ & \mathrm{E} \end{aligned}$	A	2.0 ± 0.1									
	B	4.0 ± 0.1									
	C	\＄1．55 ± 0.1	¢1．55 ± 0.1	¢1．5 ± 0.1	ф1．5＋0．1／－0	ф1．5＋0．1／－0	\＄1．5＋0．1／－0	¢1．5＋0．1／－0	ф1．5＋0．1／－0	\＄1．5＋0．1／－0	ф1．5＋0．1／－0
	D	8.0 ± 0.1	8.0 ± 0.1	8.0 ± 0.1	4.0 ± 0.1	4.0 ± 0.1	4.0 ± 0.1	$8.0 \pm 0.1 / 4.0 \pm 0.1$	$8.0 \pm 0.1 / 4.0 \pm 0.1$	8.0 ± 0.1	4.0 ± 0.1
	E	7.5 ± 0.1	7.5 ± 0.1	7.5 ± 0.1	3.5 ± 0.1	3.5 ± 0.05	5.5 ± 0.1	5.5 ± 0.1	5.5 ± 0.1	5.5 ± 0.1	7.5 ± 0.1
	F	1.75 ± 0.1									
	G	16.0 ± 0.3	16.0 ± 0.3	16.0 ± 0.2	8.0 ± 0.3	8.0 ± 0.2	$8.0 \pm 0.3 / 12.0 \pm 0.3$	12.0 ± 0.3	12.0 ± 0.3	12.0 ± 0.3	16.0 ± 0.3
	H	¢1．55	¢1．55	¢1．55 ± 0.1	中1．5＋0．1／－0	¢1．0＋0．2／－0	¢1．5＋0．1／－0	¢1．5＋0．1／－0	¢1．5＋0．1／－0	¢1．5＋0．1／－0	¢1．5＋0．1／－0
	J	8.18	8.18	7.4 ± 0.1	3.5 ± 0.1	3.6 ± 0.1	4.4 ± 0.1	5.5 ± 0.1	5.5 ± 0.1	5.5 ± 0.1	7.4 ± 0.1
	L	5.56	5.56	5.4 ± 0.1	2.8 ± 0.1	2.9 ± 0.1	2.9 ± 0.1	3.7 ± 0.1	3.7 ± 0.1	3.7 ± 0.1	5.4 ± 0.1
	N	2.16 ± 0.1	2.16 ± 0.1	2.0 ± 0.1	1.1 ± 0.1	1.3 ± 0.1	1．1 $10.1 / 1.3 \pm \pm .1$	1．6 $\pm 0.1 / 1.5 \pm 0.1$	1．6 $\pm 0.1 / 1.5 \pm 0.1$	1.8 ± 0.1	2.1 ± 0.1
	O	0.3 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	0.25 ± 0.05	0.3 ± 0.05	0．2土0．05／0．3 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	0.3 ± 0.05
$\stackrel{L}{\mathrm{E}}$	P	$\phi 330 \pm 2 \phi 254 \pm 2$	¢330 $\pm 2 \phi 254 \pm 2$	\＄180＋0／－3	\＄180 ± 2	¢180＋1／－1．5	025441／19180＋1／－1．5	¢ 330 ± 1	¢ 330 ± 1	¢ 330 ± 1	中254 ± 2
	Q	$\phi 100 \pm 1$	$\phi 100 \pm 1$	中60＋1／－0	中60	中60＋1／－0	\＄100 $1 / \phi 60+1 /-0$	¢100 $\pm 1 / \phi 60$	\＄100 $\pm 1 \phi 60$	\＄100 ± 1	中100 ± 1
	R	$\phi 13 \pm 0.3$	¢13 ± 0.3	$\phi 13 \pm 0.2$	¢13 ± 0.2	¢13 ± 0.2	$\phi 13 \pm 0.2$	¢13 ± 0.2			
	S	¢21 ± 0.8									
	U	2.0 ± 0.5	2.0 ± 0.2	2.0 ± 0.5							
	W	16.4	17．5 $\pm 0.5 / 16.4$	17 ± 0.2	9.0 ± 0.1	9．0＋0．3／－0	9．0土0．3／13．0＋0．3－0	13.5 ± 1	13.5 ± 1	13.5 ± 1	17.5 ± 0.5
Qty		3000／1000	3000／1000	1000	2000	2000	4000／2000	2000	4000	4000	1000

ORDERING FORMAT FOR CRYSTAL OSCILLATORS

Please specify the following items when ordering crystal oscillators.
I. Standard products shown in the catalogue:

Please specify package type and nominal frequency.
II. Special-order products:

Please specify the following items in specification.

1. Frequency

(1)Oscillation Frequency \qquad Hz
2. Frequency Stability
(1)Temperature \qquad $\times 10^{-6} \mathrm{MAX}$. \qquad ~ \qquad ${ }^{\circ} \mathrm{C}$ (On the basis of $+25^{\circ} \mathrm{C}$ frequency)
(2)Supply Voltage \qquad $\times 10^{-6} \mathrm{MAX}$. \qquad VDC \pm \qquad \%
(3)Load. \qquad $\times 10^{-6}$ MAX. \qquad $\Omega / /$ \qquad $\mathrm{pF} \pm$ \qquad \% \pm \qquad \%
(4)Aging \qquad $\times 10^{-6}$ MAX./year
3. Frequency Tuning Range
\pm \qquad $\times 10^{-6} \mathrm{MIN}$
4. Frequency Control Range
\pm \qquad $\sim \pm$ \qquad $\times 10^{-6} /+$ \qquad $\mathrm{V} \pm$ \qquad V

5. Output

(1) Voltage \qquad Vrms \qquad $V_{\text {p.p }}$ MIN.
(2)Wave Form

Sine, Half sine wave, Harmonics 2nd \qquad dB, 3rd \qquad dB, Others \qquad $d B$
(3)Load Resistance \qquad $\Omega / /$ Capacitance \qquad pF

6 . Supply Voltage
(1)For circuit \qquad VDC \pm \qquad \%, \qquad mA MAX.

7. Environmental Condition

(1)Operating Temperature Range \qquad ~ \qquad ${ }^{\circ} \mathrm{C}$
(2)Vibration

Total Amplitude \qquad mm, Vibration Frequency \qquad Hz~ \qquad Hz
(3)Shock \qquad
\qquad
8 . Dimensions, Pin Connection
9. Application \qquad

