Document Title

64Kx16 Bit High-Speed CMOS Static RAM(5.0V Operating). Operated at Commercial and Industrial Temperature Ranges.

Revision History

Rev.No.	<u>History</u>		<u>Draft Data</u>	<u>Remark</u>		
Rev. 0.0	Initial release wi	th preliminary.	Aug. 5. 1998	Preliminary		
Rev. 1.0	Relax DC chara		Sep. 7. 1998	Preliminary		
	Ite		Previous	Changed		
	Icc	12ns	90mA	95mA		
		15ns	88mA	93mA		
		20ns	85mA	90mA		
Rev. 2.0	Add 48-fine pitch	n BGA.	Sep. 17. 1998	Preliminary		
Rev. 2.1	Changed device	part name for F	P-BGA.		Nov. 5. 1998	Final
		Item		Changed		
	Sym	nbol	Z	F		
	ex) K6R1016C1	C-Z -> K6R1016	6C1C-F			
Rev. 2.2	Changed device	ball name for F	P-BGA.		Dec. 10. 1998	Final
	Pre	evious		nanged		
	1/01	~ I/O8	1/09	9 ~ I/O16		
	1/09	~ I/O16	I/O	1 ~ I/O8		
Rev. 3.0	Added Data Ret	ention Characte	ristics.		Mar. 3. 1999	Final
Rev. 3.1	Add 10ns part.				Mar. 3. 2000	Final
Rev. 4.0	Delete 20ns spe	ed bin			Sep.24. 2001	Final

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

64K x 16 Bit High-Speed CMOS Static RAM

FEATURES

• Fast Access Time 10,12,15ns(Max.)

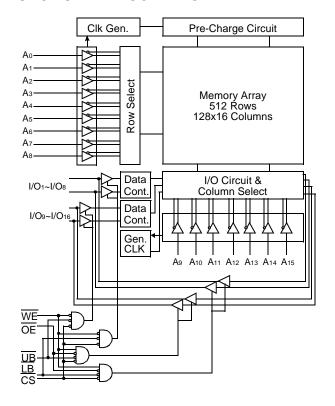
• Low Power Dissipation

Standby (TTL) : 30mA(Max.) (CMOS) : 5mA(Max.)

0.5mA(Max.) L-ver. only
Operating K6R1016C1C-10: 105mA(Max.)
K6R1016C1C-12: 95mA(Max.)
K6R1016C1C-15: 93mA(Max.)

- Single 5.0V±10% Power Supply
- TTL Compatible Inputs and Outputs
- I/O Compatible with 3.3V Device
- Fully Static Operation
 - No Clock or Refresh required
- Three State Outputs
- 2V Minimum Data Retention: L-ver. only
- Center Power/Ground Pin Configuration

• Standard Pin Configuration:


K6R1016C1C-J: 44-SOJ-400 K6R1016C1C-T: 44-TSOP2-400BF

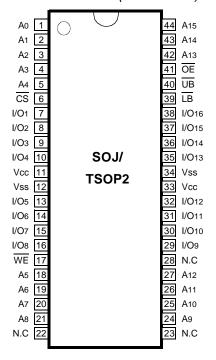
K6R1016C1C-F: 48-Fine pitch BGA with 0.75 Ball pitch

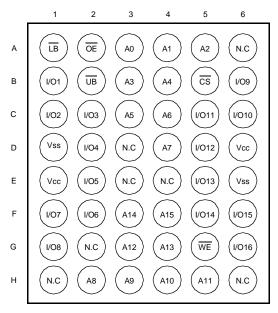
GENERAL DESCRIPTION

The K6R1016C1C is a 1,048,576-bit high-speed Static Random Access Memory organized as 65,536 words by 16 bits. The K6R1016C1C uses 16 common input and output lines and has at output enable pin which operates faster than address access time at read cycle. Also it allows that lower and upper byte access by data byte control (UB, LB). The device is fabricated using SAMSUNG's advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The K6R1016C1C is packaged in a 400mil 44-pin plastic SOJ or TSOP2 forward or 48-Fine pitch BGA.

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION


K6R1016C1C-C10/C12/C15	Commercial Temp.
K6R1016C1C-I10/I12/I15	Industrial Temp.


PIN FUNCTION

Pin Name	Pin Function
A0 - A15	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
LB	Lower-byte Control(I/O1~I/O8)
ŪB	Upper-byte Control(I/O9~I/O16)
I/O1 ~ I/O16	Data Inputs/Outputs
Vcc	Power(+5.0V)
Vss	Ground
N.C	No Connection

PIN CONFIGURATION(TOP VIEW)

48-CSP

ABSOLUTE MAXIMUM RATINGS*

Param	eter	Symbol	Rating	Unit
Voltage on Any Pin Relative	to Vss	Vin, Vout	-0.5 to Vcc+0.5	V
Voltage on Vcc Supply Rela	tive to Vss	Vcc	-0.5 to 7.0	V
Power Dissipation		Pd	1	W
Storage Temperature		Tstg	-65 to 150	°C
On and the Tanana and an	Commercial	TA	0 to 70	°C
Operating Temperature	Industrial	TA	-40 to 85	°C

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS*(TA= to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	VIH	2.2	-	Vcc+0.5***	V
Input Low Voltage	VIL	-0.5**	-	0.8	V

^{*} The above parameters are also guaranteed at industrial temperature range.

^{**} $V_{IL}(Min) = -2.0V$ a.c(Pulse Width $\leq 8ns$) for $I \leq 20mA$.

^{***} $V_{H}(Max) = V_{CC} + 2.0V$ a.c(Pulse Width $\leq 8ns$) for $I \leq 20mA$.

DC AND OPERATING CHARACTERISTICS*(TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	ILI	VIN=Vss to Vcc		-2	2	μΑ
Output Leakage Current	ILO	CS=VIH or OE=VIH or WE=VIL VOUT=Vss to Vcc		-2	2	μΑ
Operating Current	Icc Min. Cycle, 100% Duty		10ns	-	105	mA
		CS=VIL, VIN = VIH or VIL, IOUT=0mA	12ns	-	95	
			15ns	-	93	
Standby Current	Isb	Min. Cycle, CS=Vін		-	30	mA
	ISB1	f=0MHz, CS ≥Vcc-0.2V,	Normal	-	5	mA
		Vin≥Vcc-0.2V or Vin ≤0.2V	L-Ver.	-	0.5	
Output Low Voltage Level	Vol	IoL=8mA		-	0.4	V
Output High Voltage Level	Voн	IOH=-4mA		2.4	=	V
	VOH1**	IOH1=-0.1mA		-	3.95	V

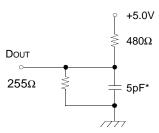
^{*} The above parameters are also guaranteed at industrial temperature range.

CAPACITANCE*(TA=25°C, f=1.0MHz)

Item	Symbol	Test Conditions	MIN	Max	Unit
Input/Output Capacitance	CI/O	VI/O=0V	-	8	pF
Input Capacitance	CIN	VIN=0V	-	6	pF

^{*} Capacitance is sampled and not 100% tested.

AC CHARACTERISTICS(TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise noted.) **TEST CONDITIONS***


Parameter	Value
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	3ns
Input and Output timing Reference Levels	1.5V
Output Loads	See below

^{*} The above test conditions are also applied at industrial temperature range.

Output Loads(A)

Dout $RL = 50\Omega$ VL = 1.5V $Zo = 50\Omega$ $30pF^*$

Output Loads(B) for thz, tLz, twhz, tow, toLz & toHz

^{**} Vcc=5.0V±5%, Temp.=25°C

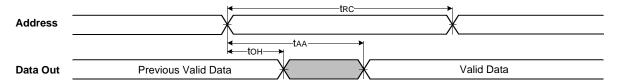
^{*} Capacitive Load consists of all components of the test environment.

^{*} Including Scope and Jig Capacitance

READ CYCLE*

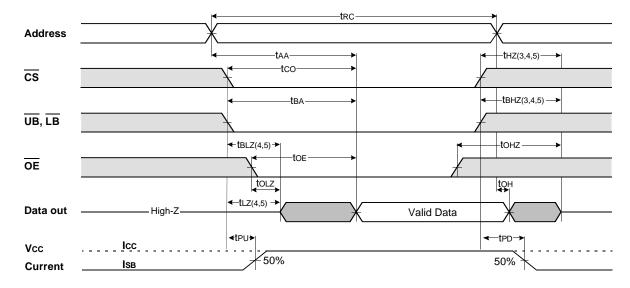
Parameter	Cumbal	K6R101	6C1C-10	K6R1016C1C-12		K6R1016C1C-15		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read Cycle Time	trc	10	-	12	-	15	-	ns
Address Access Time	taa	-	10	-	12	-	15	ns
Chip Select to Output	tco	-	10	-	12	-	15	ns
Output Enable to Valid Output	toE	-	5	-	6	-	7	ns
UB, LB Access Time	tва	-	5	-	6	-	7	ns
Chip Enable to Low-Z Output	tLZ	3	-	3	-	3	-	ns
UB, LB Enable to Low-Z Output	tBLZ	0	-	0	-	0	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ	0	5	0	6	-	7	ns
Output Disable to High-Z Output	tonz	0	5	0	6	-	7	ns
UB, LB Disable to High-Z Output	tвнz	0	5	0	6	-	7	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	ns
Chip Selection to Power Up Time	tpu	0	-	0	-	0	-	ns
Chip Selection to Power DownTime	tPD	-	10	-	12	-	15	ns

^{*} The above parameters are also guaranteed at industrial temperature range.

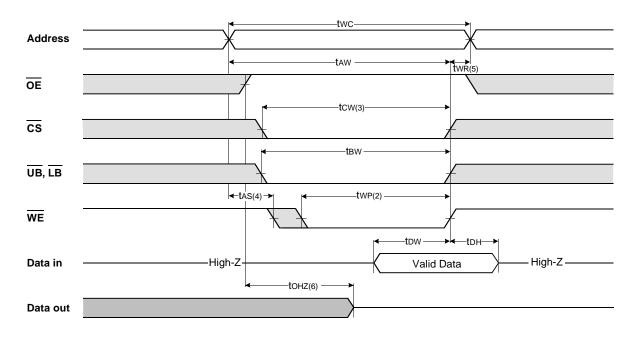

WRITE CYCLE*

Parameter	Symbol	K6R101	6C10-12	K6R1016C1C-12		K6R1016C1C-15		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write Cycle Time	twc	10	-	12	-	15	-	ns
Chip Select to End of Write	tcw	7	-	8	-	9	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	ns
Address Valid to End of Write	taw	7	-	8	-	9	-	ns
Write Pulse Width(OE High)	twp	7	-	8	-	9	-	ns
Write Pulse Width(OE Low)	tWP1	10	-	12	-	15	-	ns
UB, LB Valid to End of Write	tвw	7	-	8	-	9	-	ns
Write Recovery Time	twr	0	-	0	-	0	-	ns
Write to Output High-Z	twnz	0	5	0	6	0	7	ns
Data to Write Time Overlap	tow	5	-	6	-	7	-	ns
Data Hold from Write Time		0	-	0	-	0	-	ns
End Write to Output Low-Z	tow	3	-	3	-	3	-	ns

 $^{^{\}star}$ The above parameters are also guaranteed at industrial temperature range.


TIMING DIAGRAMS

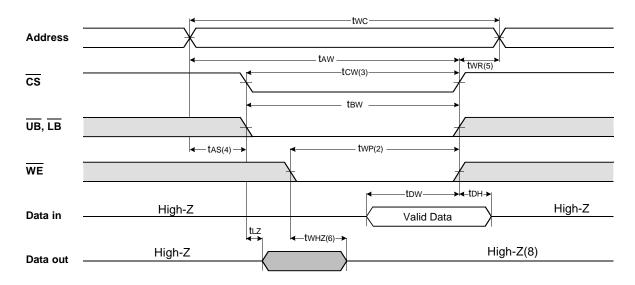
TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL, \overline{WE} = VIH, \overline{UB}, \overline{LB} = VIL$


TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

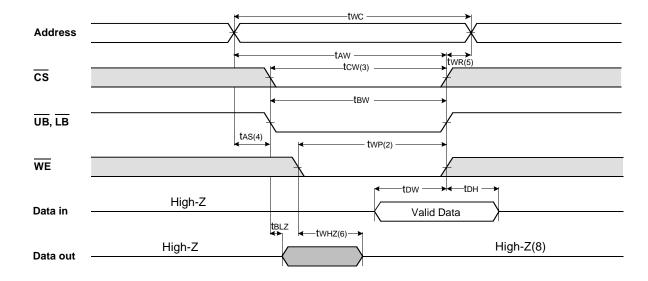
NOTES(READ CYCLE)

- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and tOHZ are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VOH or VOI levels.
- 4. At any given temperature and voltage condition, thz(Max.) is less than thz(Min.) both for a given device and from device to device.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state voltage with Load(B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with CS=ViL.
- 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

TIMING WAVEFORM OF WRITE CYCLE(1) (OE =Clock)



TIMING WAVEFORM OF WRITE CYCLE(2) (OE =Low fixed)



TIMING WAVEFORM OF WRITE CYCLE(3) (CS=Controlled)

TIMING WAVEFORM OF WRITE CYCLE(4) (UB, LB Controlled)

NOTES(WRITE CYCLE)

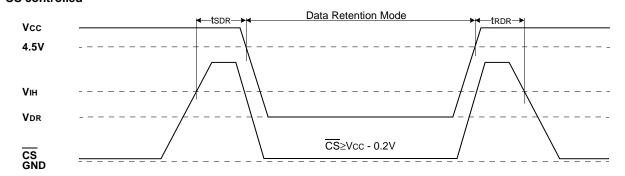
- 1. All write cycle timing is referenced from the <u>last valid ad</u>dress <u>to</u> the first transition address.
 2. A write occurs during the overlap of a low CS, <u>WE</u>, LB and <u>UB</u>. <u>A wr</u>ite begins at the latest transition <u>CS</u> going low and <u>WE</u> going low; A write ends at the earliest transition $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. two is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of $\overline{\text{CS}}$ going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. twe is measured from the end of write to the address change. twe applied in case a write ends as CS or WE going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address.
- 10. When \overline{CS} is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

FUNCTIONAL DESCRIPTION

cs	WE	OE	LB	UB	Mode	I/O	I/O Pin		
	W C	OE	LB	ОВ	Wiode	I/O1~I/O8	I/O9~I/O16	Supply Current	
Н	Х	X*	Х	Х	Not Select	High-Z	High-Z	ISB, ISB1	
L	Н	Н	Х	Х	Output Disable	High-Z	High-Z	Icc	
L	Х	Х	Н	Н					
L	Н	L	L	Н	Read	D оит	High-Z	Icc	
			Н	L		High-Z	Douт		
			L	L		D ouт	D оит		
L	L	Х	L	Н	Write	DIN	High-Z	Icc	
			Н	L		High-Z	Din		
			L	L		DIN	Din		

^{*} X means Don't Care.

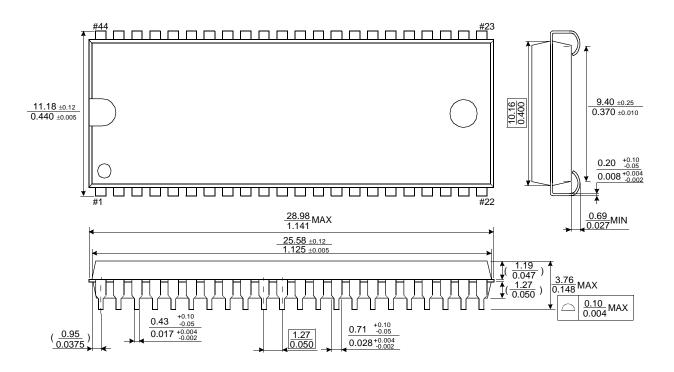

DATA RETENTION CHARACTERISTICS*(TA=0 to 70°C)

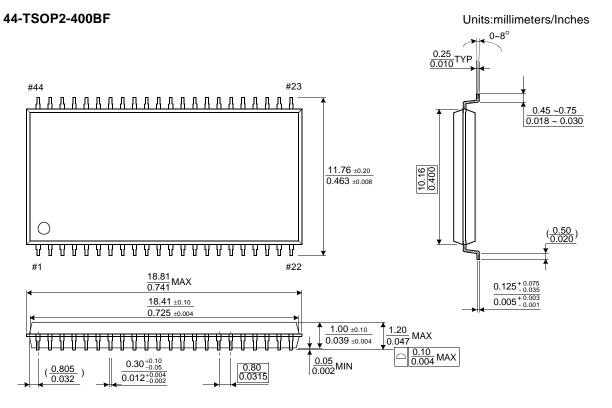
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for Data Retention	VDR	CS ≥Vcc-0.2V	2.0	-	5.5	V
Data Retention Current	IDR	Vcc=3.0V, CS ≥Vcc-0.2V VIN≥Vcc-0.2V or VIN≤0.2V	-	-	0.4	mA
		Vcc=2.0V, CS≥Vcc-0.2V VIN≥Vcc-0.2V or VIN≤0.2V	-	-	0.3	
Data Retention Set-Up Time	tsdr	See Data Retention	0	-	-	ns
Recovery Time	trdr	Wave form(below)	5	-	-	ms

^{*} The above parameters are also guaranteed at industrial temperature range. Data Retention Characteristic is for L-ver only.

DATA RETENTION WAVE FORM

CS controlled

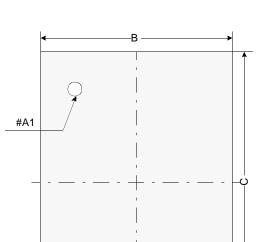




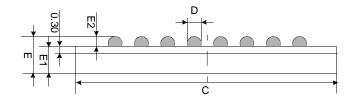
PACKAGE DIMENSIONS

Units:millimeters/Inches

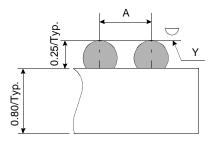
44-SOJ-400



(Units : millimeter)


PACKAGE OUTLINE

Top View


Bottom View

Side View

	Min	Тур	Max
Α	-	0.75	-
В	5.90	6.00	6.10
B1	-	3.75	-
С	6.90	7.00	7.10
C1	-	5.25	-
D	0.30	0.35	0.40
Е	-	1.05	1.20
E1	-	0.80	-
E2	0.20	0.25	0.30
Υ	-	-	0.08

Detail A

Notes.

- 1. Bump counts: 48(8row x 6column)
- 2. Bump pitch : $(x,y)=(0.75 \times 0.75)(typ.)$
- 3. All tolerence are +/-0.050 unless otherwise specified.
- 4. Typ: Typical
- 5. Y is coplanarity: 0.08(Max)

