

LH0070 Series Precision BCD Buffered Reference LH0071 Series Precision Binary Buffered Reference

General Description

Equivalent Schematic

GND

H0070

1 H0070

Typical Applications

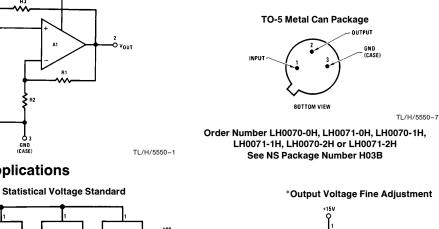
1 H0070

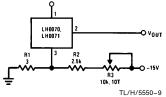
Ţ

+15V O

The LH0070 and LH0071 are precision, three terminal, voltage references consisting of a temperature compensated zener diode driven by a current regulator and a buffer amplifier. The devices provide an accurate reference that is virtually independent of input voltage, load current, temperature and time. The LH0070 has a 10.000V nominal output to provide equal step sizes in BCD applications. The LH0071 has a 10.240V nominal output to provide equal step sizes in binary applications.

The output voltage is established by trimming ultra-stable, low temperature drift, thin film resistors under actual operating circuit conditions. The devices are shortcircuit proof in both the current sourcing and sinking directions.


The LH0070 and LH0071 series combine excellent long term stability, ease of application, and low cost, making them ideal choices as reference voltages in precision D to A and A to D systems.


Features

 Accuracy output voltage 	
LH0070	$10V\pm0.02\%$
LH0071	$10.24V \pm 0.02\%$
 Single supply operation 	11.4V to 40V
 Low output impedance 	0.2Ω
 Excellent line regulation 	0.1 mV/V
Low zener noise	20 µVp-p
■ 3-lead TO-5 (pin compatible with th	ne LM109)

- Short circuit proof
- Low standby current

Connection Diagram

*Note: The output of the LH0070 and LH0071 may be adjusted to a precise voltage by using the above circuit since the supply current of the devices is relatively small and constant with temperature and input voltage. For the circuit shown, supply sensitivities are degraded slightly to 0.01%/V change in VOUT for changes in VIN and V-

O 10.00V

TL/H/5550-8

100 100

OPTIONAL

An additional temperature drift of 0.0001%/°C is added due to the variation of supply current with temperature of the LH0070 and LH0071. Sensitivity to the value of R1, R2 and R3 is less than 0.001%/%

© 1995 National Semiconductor Corporation TL/H/5550 RRD-B30M115/Printed in U. S. A.

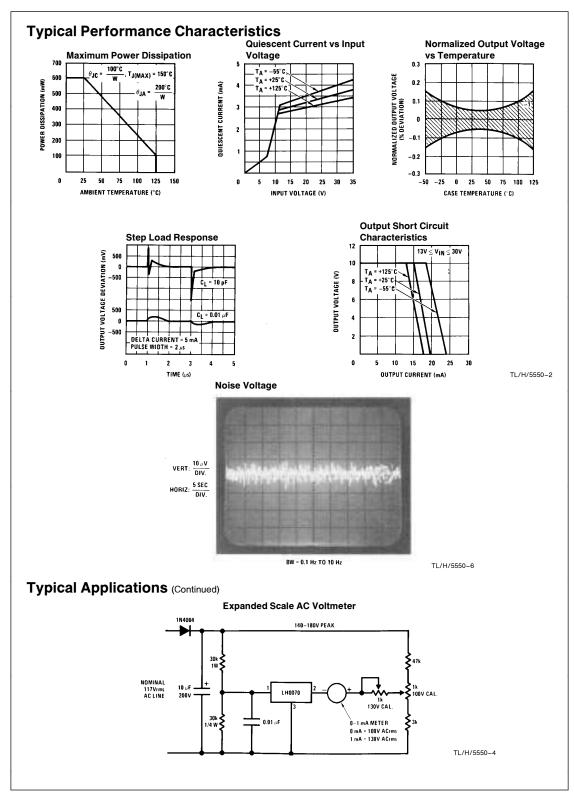
H0071 H0070) Series I Series Precision Precision ω B inary ω **Buffered Reference** uffered Reference

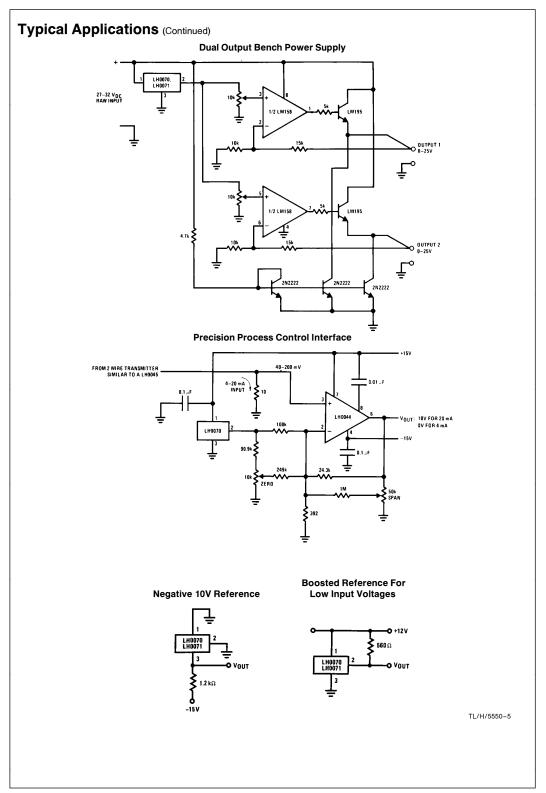
3 mA

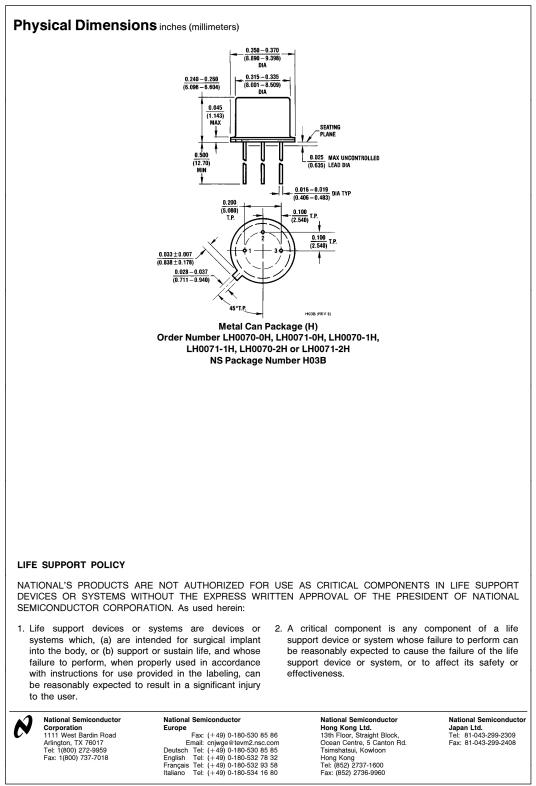
July 1987

Absolute Maximum Ratings				
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)		Short Circuit Duration	Continuous	
		Output Current	\pm 20 mA	
		Operating Temperature Range	-55°C to +125°C	
Supply Voltage	40V	Storage Temperature Range	-65° C to $\pm 150^{\circ}$ C	
Power Dissipation (See Curve)	40 v 600 mW	Lead Temp. (Soldering, 10 seconds)	300°C	

Electrical Characteristics (Note 1)


Parameter	Conditions	Min	Тур	Max	Units
Output Voltage LH0070	T _A =25°C		10.000		V V
LH0071			10.24		V
Output Accuracy -0, -1 -2	T _A =25°C		±0.03 ±0.02	±0.1 ±0.05	%
Output Accuracy -0, -1	T _A =-55°C, 125°C			±0.3	%
-2				±0.2	%
Output Voltage Change With Temperature	(Note 2)				
-0				±0.2	%
-1			±0.02	±0.1	%
-2			±0.01	±0.04	%
Line Regulation -0, -1 -2	$13V \le V_{IN} \le 33V, T_C = 25^{\circ}C$		0.02 0.01	0.1 0.03	%
Input Voltage Range	$R_{I} = 50 k\Omega$	11.4	0.01	40	V
Load Regulation	0 mA≤l _{OUT} ≤5 mA		0.01	0.03	%
Quiescent Current	$13V \le V_{IN} \le 33V$, $I_{OUT} = 0$ mA	1	3	5	mA
Change In Quiescent Current	$\Delta V_{IN} = 20V$ From 23V To 33V		0.75	1.5	mA
Output Noise Voltage	BW=0.1 Hz To 10 Hz, T _A =25°C		20		μVp-p
Ripple Rejection	f=120 Hz		0.01		%/Vp-
Output Resistance			0.2	0.6	Ω
Long Term Stability -0, -1 -2	T _A =25°C (Note 3)			±0.2 ±0.05	%/yr. %/yr.
Thermal Resistance θ_{ja} (Junction to Ambient) θ_{jc} (Junction to Case)	$T_j = 150^{\circ}C$		200 100		°C/W °C/W


Note 1: Unless otherwise specified, these specifications apply for V_{IN} = 15.0V, R_L = 10 k Ω , and over the temperature range of -55°C \leq T_A \leq + 125°C. Note 2: This specification is the difference in output voltage measured at $T_A = 85^{\circ}C$ and $T_A = 25^{\circ}C$ or $T_A = 25^{\circ}C$ and $T_A = -25^{\circ}C$ with readings taken after test chamber and device-under-test stabilization at temperature using a suitable precision voltmeter.


Note 3: This parameter is guaranteed by design and not tested.

Note 4: Refer to the following RETS drawings for military specifications: RETS0070-0H for LH0070-0H RETS0070-1H for LH0070-1H RETS0070-2H for LH0070-2H

RETS0071-0H for LH0071-0H RETS0071-1H for LH0071-1H RETS0071-2H for LH0071-2H

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications