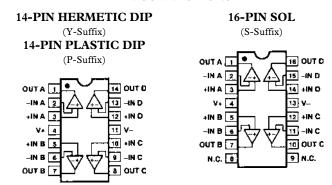


# Quad Low-Offset, Low-Power Operational Amplifier

**OP400** 

#### **FEATURES**


Low Input Offset Voltage 150 μV Max
Low Offset Voltage Drift, Over −55°C to +125°C
1.2 pV/°C Max
Low Supply Current (Per Amplifier) 725 μA Max
High Open-Loop Gain 5000 V/mV Min
Input Bias Current 3 nA Max
Low Noise Voltage Density 11 nV/√Hz at 1 kHz
Stable With Large Capacitive Loads 10 nF Typ
Pin Compatible to LM148, HA4741, RM4156, and LT1014
with Improved Performance
Available in Die Form

#### **GENERAL DESCRIPTION**

The OP400 is the first monolithic quad operational amplifier that features OP77 type performance. Precision performance no longer has to be sacrificed to obtain the space and cost savings offered by quad amplifiers.

The OP400 features an extremely low input offset voltage of less than 150  $\mu V$  with a drift of under 1.2  $\mu V/^{\circ}C$ , guaranteed over the full military temperature range. Open-loop gain of the OP400 is over 5,000,000 into a 10 k $\Omega$  load, input bias current is under 3 nA, CMR is above 120 dB, and PSRR is below 1.8  $\mu V/V$ . On-chip zener-zap trimming is used to achieve the low input offset voltage of the OP400 and eliminates the need for offset nulling. The OP400 conforms to the industry-standard quad pinout which does not have null terminals.

#### PIN CONNECTIONS



The OP400 features low power consumption, drawing less than 725  $\mu A$  per amplifier. The total current drawn by this quad amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry standard op amp. Voltage noise density of the OP400 is a low 11 nV/ $\sqrt{Hz}$  at 10 Hz, which is half that of most competitive devices.

The OP400 is pin-compatible with the LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems using these devices. The OP400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical.

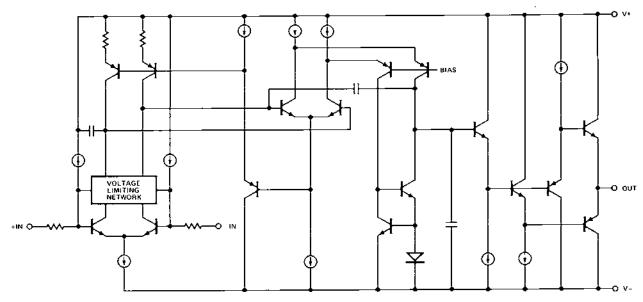



Figure 1. Simplified Schematic (One of Four Amplifiers is Shown)

#### REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

# **OP400—SPECIFICATIONS**

# $\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} (@V_S = 15 \text{ V}, T_A = 25 ^{\circ}\text{C}, unless otherwise noted.) \\ \end{tabular}$

|                              |                    |                            |          | <b>OP</b> 40 | 0A/E |      | OP40       | 0 <b>F</b> |          | OP40       | 0G/H |                    |
|------------------------------|--------------------|----------------------------|----------|--------------|------|------|------------|------------|----------|------------|------|--------------------|
| Parameter                    | Symbol             | Conditions                 | Min      | Typ          | Max  | Min  | Typ        | Max        | Min      | Typ        | Max  | Unit               |
| Input Offset                 |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Voltage                      | V <sub>OS</sub>    |                            |          | 40           | 150  |      | 60         | 230        |          | 80         | 300  | μV                 |
| Long-Term Input              |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Voltage Stability            |                    |                            |          | 0.1          |      |      | 0.1        |            |          | 0.1        |      | μV/mo              |
| Input Offset                 |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Current                      | I <sub>OS</sub>    | VCM = °V                   |          | 0.1          | 1.0  |      | 0.1        | 2.0        |          | 0.1        | 3.5  | nA                 |
| Input Bias                   |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Current                      | $I_B$              | VCM = °V                   |          | 0.75         | 3.0  |      | 0.75       | 6.0        |          | 0.75       | 7.0  | nA                 |
| Input Noise                  |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Voltage                      | e <sub>n p-p</sub> | 0.1 Hz to 10 Hz            |          | 0.5          |      |      | 0.5        |            |          | 0 5        |      | μV p-p             |
| Input Noise                  |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Voltage Density <sup>1</sup> | $e_n$              | $f_0 = 10 \text{ Hz}^1$    |          | 22           | 36   |      | 22         | 36         |          | 22         |      |                    |
|                              |                    | $f_0 = 1000 \text{ Hz}^1$  |          | 11           | 18   |      | 11         | 18         |          | 11         |      | $nV/\sqrt{Hz}$     |
| Input Noise                  |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Current                      | i <sub>n p-p</sub> | 0.1 Hz to 10 Hz            |          | 15           |      |      | 15         |            |          | 15         |      | pAp-p              |
| Input Noise                  |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Current Density              | $i_n$              | $f_O = 10 \text{ Hz}$      |          | 0.6          |      |      | 0.6        |            |          | 0.6        |      | pA/√ <del>Hz</del> |
| Input Resistance             |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Differential Mode            | $R_{IN}$           |                            |          | 10           |      |      | 10         |            |          | 10         |      | $M\Omega$          |
| Input Resistance             |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Common Mode                  | $R_{INCM}$         |                            |          | 200          |      |      | 200        |            |          | 200        |      | $G\Omega$          |
| Large Signal                 |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Voltage Gain                 | $A_{VO}$           | $V_O = \pm 10 \text{ V}$   |          |              |      |      |            |            |          |            |      |                    |
|                              |                    | $R_L = 10 \text{ k}\Omega$ | 5000     | 12000        |      | 3000 | 7000       |            | 3000     | 7000       |      |                    |
|                              |                    | $R_L = 2 k\Omega$          | 2000     | 3500         |      | 1500 | 3000       |            | 1500     | 3000       |      | V/mV               |
| Input Voltage                |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Range <sup>3</sup>           | IVR                |                            | ±12      | ±13          |      | ±12  | ±13        |            | ±12      | ±13        |      | V                  |
| Common Mode                  |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Rejection                    | CMR                | VCM = 12 V                 | 120      | 140          |      | 115  | 140        |            | 110      | 135        |      | dB                 |
| Power Supply                 |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Rejection Ratio              | PSRR               | $V_S = 3 V$                |          |              |      |      |            |            |          |            |      |                    |
|                              |                    | to 18 V                    |          | 0.1          | 1.8  |      | 0.1        | 3.2        |          | 0.2        | 5 6  | μV/V               |
| Output Voltage               |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Swing                        | $V_{O}$            | $R_L = 10 \text{ k}\Omega$ | ±12      | $\pm 12.6$   |      | ±12  | $\pm 12.6$ |            | ±12      | $\pm 12.6$ |      | V                  |
|                              |                    | $R_L = 2 k\Omega$          | ±11      | ±12.2        |      | ±11  | ±12.2      |            | ±11      | ±12.2      |      |                    |
| Supply Current               |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Per Amplifier                | $I_{SY}$           | No Load                    | <u> </u> | 600          | 725  |      | 600        | 725        | <u> </u> | 600        | 725  | μA                 |
| Slew Rate                    | SR                 |                            | 0.1      | 0.15         |      | 0.1  | 0.15       |            | 0.1      | 0.15       |      | V/µs               |
| Gain Bandwidth               |                    |                            | 1        |              |      |      |            |            |          |            |      |                    |
| Product                      | GBWP               | $A_V = 1$                  |          | 500          |      |      | 500        |            |          | 500        |      | kHz                |
| Channel                      |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Separation                   | CS                 | $V_0 = 20 \text{ V p-p}$   | 123      | 135          |      | 123  | 135        |            | 123      | 135        |      | dB                 |
|                              |                    | $f_O = 10 \text{ Hz}^2$    |          |              |      |      |            |            |          |            |      |                    |
| Input                        |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Capacitance                  | $C_{IN}$           |                            |          | 3.2          |      |      | 3.2        |            |          | 3.2        |      | pF                 |
| Capacitive Load              |                    |                            |          |              |      |      |            |            |          |            |      |                    |
| Stability                    |                    | $A_V = 1$                  |          |              |      |      |            |            |          |            |      |                    |
| *                            |                    | No Oscillations            | 1        | 10           |      | I    | 10         |            | 1        | 10         |      | nF                 |

REV. A -2-

NOTES

Sample tested

<sup>&</sup>lt;sup>2</sup>Guaranteed but not 100% tested. <sup>3</sup>Guaranteed by CMR test

# **SPECIFICATIONS** (continued)

# $\textbf{ELECTRICAL CHARACTERISTICS} \ \ (@\ V_S = 15\ V, -55^{\circ}C \leq T_A = 125^{\circ}C \ \text{for OP400A, unless otherwise noted.})$

| Parameter                          | Symbol            | Conditions                                            | Min  | Тур   | Max | Unit  |
|------------------------------------|-------------------|-------------------------------------------------------|------|-------|-----|-------|
| Input Offset Voltage               | VoS               |                                                       |      | 70    | 270 | μV    |
| Average Input Offset Voltage Drift | TCV <sub>OS</sub> |                                                       |      | 0.3   | 12  | μV/°C |
| Input Offset Current               | I <sub>OS</sub>   | $V_{CM} = 0 V$                                        |      | 01    | 2.5 | nA    |
| Input Bias Current                 | $I_{\mathrm{B}}$  | $V_{CM} = 0 \text{ V}$                                |      | 1.3   | 5.0 | nA    |
| Large Signal Voltage Gain          | $A_{VO}$          | $V_{O} = \pm 10 \text{ V R}_{L} = 10 \text{ k}\Omega$ | 3000 | 9000  |     | V/mV  |
|                                    |                   | $R_L = 2 k\Omega$                                     | 1000 | 2300  |     |       |
| Input Voltage Range*               | IVR               |                                                       | ±12  | ±12.5 |     | V     |
| Common Mode Rejection              | CMR               | $V_{CM} = \pm 12 \text{ V}$                           | 115  | 130   |     | dB    |
| Power Supply Rejection Ratio       | PSRR              | $V_0 = 3 \text{ V to } 18 \text{ V}$                  |      | 0.2   | 3.2 | μV/V  |
| Output Voltage Swing               | VO                | $R_{\rm L}$ = 10 k $\Omega$                           | ±12  | ±12.4 |     |       |
|                                    |                   | $R_L = 2 k\Omega$                                     | ±11  | ±12   |     | V     |
| Supply Current Per Amplifier       | I <sub>SY</sub>   | No Load                                               |      | 600   | 775 | μΑ    |
| Capacitive Load Stability          |                   | $A_V = 1$                                             |      | 8     |     | nF    |
|                                    |                   | No Oscillations                                       |      |       |     |       |

NOTE

# $\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} & (@V_S = \pm 15 \text{ V}, -25^{\circ}\text{C} \leq \text{TA S} \pm 85^{\circ}\text{C for OP400E/F, 0°C S T}_A \leq 70^{\circ}\text{C for OP400G, } \\ -40^{\circ}\text{C} \leq \text{T}_A \leq +85^{\circ}\text{C for OP400H, unless otherwise noted.)} \end{array}$

|                      |                  |                             |      | <b>OP</b> 40 | 0A/E |      | OP40       | 0 <b>F</b> |      | <b>OP</b> 40 | 0G/H |       |
|----------------------|------------------|-----------------------------|------|--------------|------|------|------------|------------|------|--------------|------|-------|
| Parameter            | Symbol           | Conditions                  | Min  | Typ          | Max  | Min  | Typ        | Max        | Min  | Typ          | Max  | Unit  |
| Input Offset         |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Voltage              | $V_{OS}$         |                             |      | 60           | 220  |      | 80         | 350        |      | 110          | 400  | μV    |
| Average Input Offset |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Voltage Drift        | TCVos            |                             |      | 0 3          | 1.2  |      | 0.3        | 2.0        |      | 0.6          | 2.5  | μV/°C |
| Input Offset         |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Current              | $I_{OS}$         | $V_{CM} = 0 V$              |      |              |      |      |            |            |      |              |      |       |
|                      |                  | E, F, G Grades              |      | 0.1          | 2.5  |      | 0.1        | 3.5        |      | 0.2          | 6.0  |       |
|                      |                  | H Grade                     |      |              |      |      |            |            |      | 0.2          | 12.0 | nA    |
| Input Bias           |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Current              | $I_{\mathrm{B}}$ | $V_{CM} = 0 V$              |      |              |      |      |            |            |      |              |      |       |
|                      | _                | E, F, G Grades              |      | 0.1          | 2.5  |      | 0.1        | 3.5        |      | 1.0          | 12.0 |       |
|                      |                  | H Grade                     |      |              |      |      |            |            |      | 1.0          | 20.0 | nA    |
| Large-Signal         |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Voltage Gain         | A <sub>VO</sub>  | $V_{CM} = 0 V$              |      |              |      |      |            |            |      |              |      |       |
| · ·                  | '-               | $R_I = 10 \text{ k}\Omega$  | 3000 | 10000        |      | 2000 | 5000       |            | 2000 | 5000         |      |       |
|                      |                  | $R_L = 2 k\Omega$           | 1500 | 2700         |      | 1000 | 2000       |            | 1000 | 2000         |      | V/mv  |
| Input Voltage        |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Range                | IVR              | *                           | ±12  | ±12.5        |      | ±12  | ±12.5      |            | ±12  | ±12.5        |      | V     |
| Common-Mode          |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Rejection            | CMR              | $V_{CM} = \pm 12 \text{ V}$ | 115  | 135          |      | 110  | 135        |            | 105  | 130          |      | dB    |
| Power Supply         |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Rejection Ratio      | PSRR             | $V_S = \pm 3 \text{ V}$     |      |              |      |      |            |            |      |              |      |       |
|                      |                  | to ±18 V                    | 0.15 | 3.2          |      | 0.15 | 5.6        |            | 0.3  | 10.0         |      | μV/V  |
| Output Voltage       |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Swing                | $V_{O}$          | $R_L = 10 \text{ k}\Omega$  | ±12  | $\pm 12.4$   |      | ±12  | $\pm 12.4$ |            | ±12  | $\pm 12.6$   |      | V     |
|                      |                  | $R_L = 2 k\Omega$           | ±11  | ±12          |      | ±11  | ±12        |            | ±11  | $\pm 12.2$   |      |       |
| Supply Current       |                  |                             |      |              |      |      |            |            |      |              |      |       |
| Per Amplifier        | $I_{SY}$         | No Load                     |      | 600          | 775  |      | 600        | 775        |      | 600          | 775  | μA    |
| Capacitive Load      |                  |                             |      | 10           |      |      | 10         |            |      | 10           |      | nF    |
| Stability            |                  | No Oscillations             |      |              |      |      |            |            |      |              |      |       |

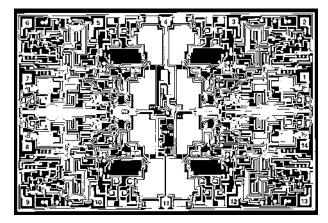
NOTE

REV. A -3-

<sup>\*</sup>Guaranteed by CMR test

<sup>\*</sup>Guaranteed by CMR test.

#### ORDERING INFORMATION


| $T_A = 25^{\circ}C$ | Pacl    | Operating |             |  |
|---------------------|---------|-----------|-------------|--|
| Vos Max             | CerDIP  |           | Temperature |  |
| (mV)                | 14-Lead | Plastic   | Range       |  |
| 150                 | OP400AY |           | MIL         |  |
| 150                 | OP400EY |           | IND         |  |
| 230                 | OP400FY |           | IND         |  |
| 300                 |         | OP400GP   | COM         |  |
| 300                 |         | OP400GS   | COM         |  |
| 300                 |         | OP400HP   | XIND        |  |
| 300                 |         | OP400HS   | XIND        |  |

#### NOTES

For Military processed devices, please refer to the standard microcircuit drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp

| SMD Part Number | ADI Equivalent |
|-----------------|----------------|
| 5962-8777101M3A | OP400ATCMDA    |
| 5962-8777101MCA | OP400AYMDA     |

#### **DICE CHARACTERISTICS**



DIE SIZE 0.181  $\times$  0.123 inch, 22,263 sq. milts (4.60  $\times$  3.12 mm, 14.35 sq. mm)

| 1. OUT A | 8. OUT C  |
|----------|-----------|
| 2. –IN A | 9. –IN C  |
| 3. +INA  | 10. +IN C |
| 4. V+    | 11. V-    |
| 5. +IN B | 12. +IND  |
| 6. –IN B | 13IN D    |
| 7. OUT B | 14. OUT D |

### WAFER TEST LIMITS (@ $V_S = \pm 15 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ , unless otherwise noted.)

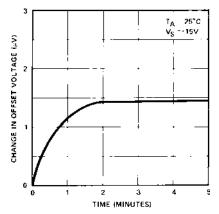
|                              |                  |                                                   | OP400GBC |          |
|------------------------------|------------------|---------------------------------------------------|----------|----------|
| Parameter                    | Symbol           | Conditions                                        | Limit    | Unit     |
| Input Offset Voltage         | $V_{OS}$         |                                                   | 230      | μΑ Max   |
| Input Offset Current         | V <sub>OS</sub>  | $V_{CM} = 0 V$                                    | 2        | nA Max   |
| Input Bias Current           | $I_{\mathrm{B}}$ | $V_{CM} = 0 V$                                    | 6        | nA Max   |
| Large Signal                 | $A_{VO}$         | $V_O = \pm 10 \text{ V R}_L = 10 \text{ k}\Omega$ | 3000     |          |
| Voltage Gain                 |                  | Rig 2 k $\Omega$                                  | 1500     | V/mV Min |
| Input Voltage Range*         | IVR              | *                                                 | ±12      | V Min    |
| Common Mode Rejection        | CMR              | $V_{CM} = \pm 12 \text{ V}$                       | 115      | dB Min   |
| Power Supply Rejection Ratio | PSRR             | $V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$      | 3.2      | μV/V Max |
| Output Voltage Swing         | Vo               | $R_L = 10 \text{ k}\Omega$                        |          |          |
|                              |                  | $R_L = 2 k\Omega$                                 | ±12      | V Min    |
| Supply Current Per Amplifier | $I_{SY}$         | No Load                                           | 725      | μΑ Max   |

#### NOTE

Electrical tests are performed at wafer probe to the limits shown Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

#### **CAUTION**

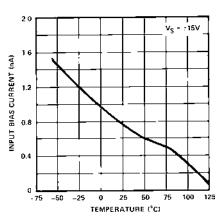
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP400 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



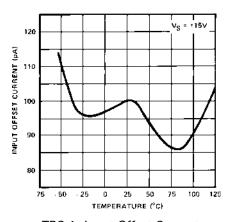

<sup>&</sup>lt;sup>1</sup>For devices processed in total compliance to MIL-STD-883, add/883after part number. Consult factory for 883 data sheet.


<sup>&</sup>lt;sup>2</sup>Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

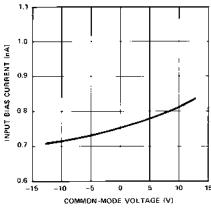
<sup>\*</sup>Guaranteed by CMR test.


# **Typical Performance Characteristics—0P400**

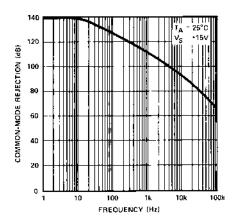



TPC 1. Warm-Up Drift

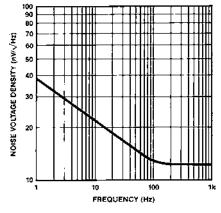



TPC 2. Input Offset Voltage vs. Temperature

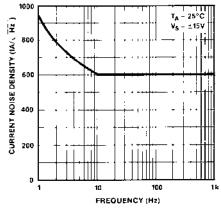



TPC 3. Input Bias Current vs. Temperature

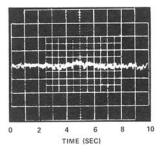



TPC 4. Input Offset Current vs. Temperature



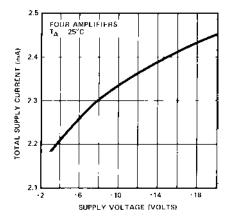

TPC 5. Input Bias Current vs. Common-Mode Voltage



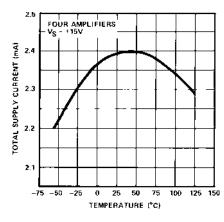

TPC 6. Common-Mode Rejection vs. Frequency



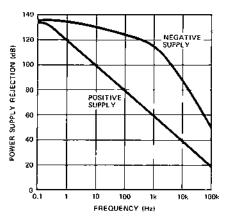
TPC 7. Noise Voltage Density vs. Frequency



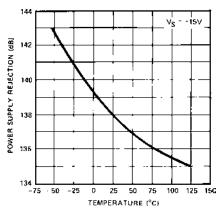

TPC 8. Current Noise Density vs. Frequency



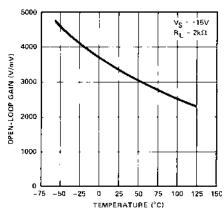

TPC 9. 0.1 Hz to10 Hz Noise


REV. A -5-




TPC 10. Total Supply Current vs. Supply Voltage

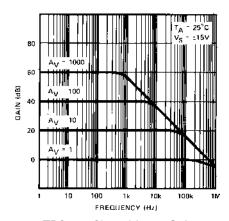



TPC 11. Total Supply Current vs. Temperature

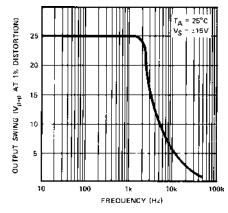


TPC 12. Power Supply Rejection vs. Frequency

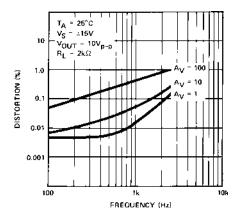



TPC 13. Power Supply Rejection vs. Temperature



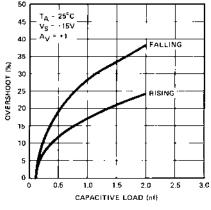

TPC 14. Open-Loop Gain vs. Temperature



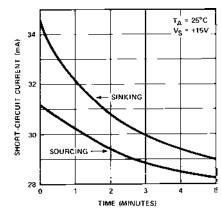

TPC 15. Open-Loop Gain and Phase Shift vs. Frequency



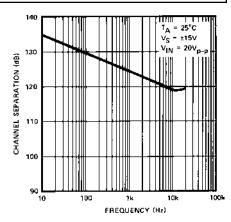
TPC 16. Closed-Loop Gain vs. Frequency



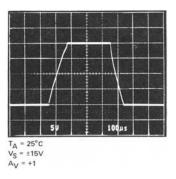

TPC 17. Maximum Output Swing Frequency



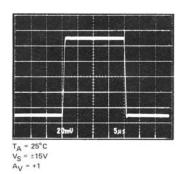

TPC 18. Total Harmonic Distortion vs. Frequency


-6- REV. A

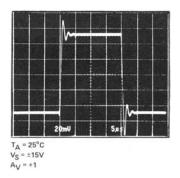



TPC 19. Overshoot vs. Capacitive Load




TPC 20. Short Circuit vs. Time




TPC 21. Channel Separation vs. Frequency



TPC 22. Large-Signal Transient Response



TPC 23. Small-Signal Transient Response



TPC 24. Small-Signal Transient Response  $C_{LOAD} = 1nF$ 

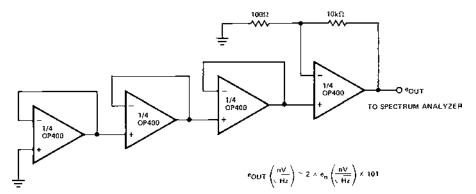
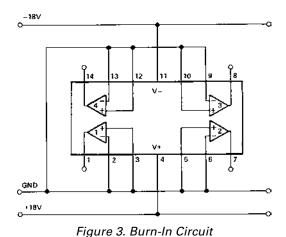




Figure 2. Noise Test Schematic

REV. A -7-



APPLICATIONS INFORMATION

The OP400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP400.

Total supply current can be reduced by connecting the inputs of an unused amplifier to –V. This turns the amplifier off, lowering the total supply current.

#### **APPLICATIONS**

#### **Dual Low-Power Instrumentation Amplifier**

A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 1. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (G = 1000). Offset voltage drift is typically 0.4  $\mu V/^{\circ} C$  over the military temperature range which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low-power instrumentation amplifier is a function of gain and is shown in Table I.

Table I. Gain Bandwidth

| Gain | Bandwidth |
|------|-----------|
| 5    | 150 kHz   |
| 10   | 67 kHz    |
| 100  | 7.5 kHz   |
| 1000 | 500 Hz    |

The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from -10 V to +10 V if required.

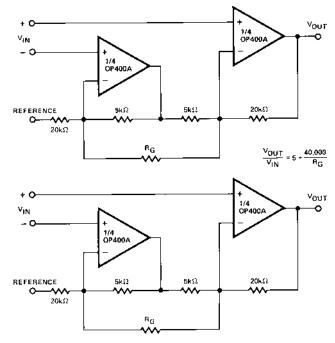



Figure 4. Dual Low-Power Instrumentation Amplifier

-8- REV. A

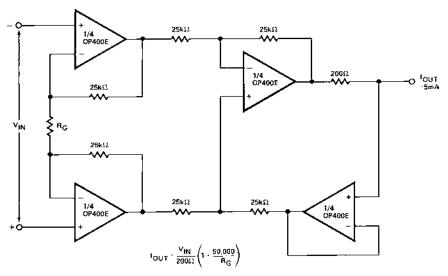



Figure 5. Bipolar Current Transmitter

#### **BIPOLAR CURRENT TRANSMITTER**

In the circuit of Figure 5, which is an extension of the standard three op amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is  $\pm 5$  mA with voltage compliance equal to  $\pm 10$  V when using  $\pm 15$  V supplies. Output impedance of the current transmitter exceeds 3 M $\Omega$  and linearity is better than 16 bits with gain set for a full scale input of  $\pm 100~\mu V$ .

### DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER

The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at  $\pm 15~V$ , to a maximum of 24 V p-p. The differential output instrumentation amplifier of Figure 6 can provide an output voltage swing of 48 V p-p when operated with  $\pm 15~V$  supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs will swing 24 V p-p but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can be used to set a common-mode output voltage over the range  $\pm 10~V$ . PSRR of the amplifier is less than 1  $\mu V/V$  with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4  $\mu V/^{\circ}C$  over the military temperature range.

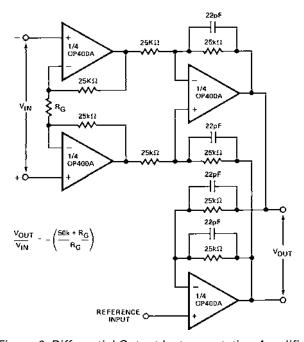



Figure 6. Differential Output Instrumentation Amplifier

REV. A -9-

### MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE

Figure 7 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation

under 25  $\mu$ V/mA. Line regulation is better than 15  $\mu$ V/V and output voltage drift is under 20  $\mu$ V/°C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75  $\mu$ V p-p from the 10 V output and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs.

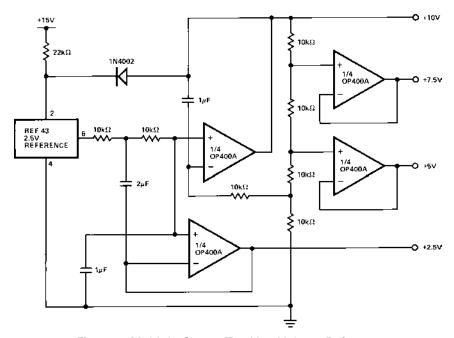
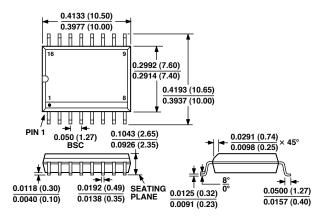



Figure 7. Multiple-Output Tracking Voltage Reference


-10- REV. A

#### **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

#### 14-Lead Hermetic DIP Package 14-Lead Plastic DIP Package (Y-Suffix) (P-Suffix) 0.005 (0.13) MIN 0.098 (2.49) MAX 0.795 (20.19) 0.725 (18.42) 0.310 (7.87) 0.280 (7.11) 0.220 (5.59) 0.240 (6.10) ♥♥♥♥♥ → |← 0.100 (2.54) BSC 0.320 (8.13) → <del>|</del> → 0.100 (2.54) 0.325 (8.25) 0.290 (7.37) 0.300 (7.62) 0.060 (1.52) - 0.785 (19.94) MAX - 0.060 (1.52) 0.015 (0.38) 0.200 (5.08) 0.195 (4.95) 0.115 (2.93) 0.210 (5.33) MAX 0.015 (0.38) 0.150 (3.81) MIN 0.130 (3.30) MIN 0.200 (5.08) \$ 0.160 (4.06) 0.070 (1.78) SEATING PLANE 0.125 (3.18) 0.015 (0.38) 0.115 (2.93) 0.015 (0.381) 18) <del>⊳</del>⊮<del>⊲</del> 0.023 (0.58) 0.022 (0.558) 0.070 (1.77) SEATING 0.014 (0.356) 0.045 (1.15) PLANE 0.008 (0.20) 0.008 (0.204) 0.014 (0.36) 0.030 (0.76)

### 16-Lead SOL Package (S-Suffix)



### **Revision History**

| Location                                  | Page |
|-------------------------------------------|------|
| Data Sheet changed from REV. 0 to REV. A. |      |
| Edits to FEATURES                         |      |
| Edits to ORDERING INFORMATION             |      |
| Edits to PIN CONNECTIONS                  |      |
| Edits to GENERAL DESCRIPTIONS             |      |
| Edits to PACKAGE TYPE                     |      |

REV. A -11-